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Abstract. In this paper, we demonstrate the de Broglie's hypothesis of the 

existence of a thermodynamic particle is correct. For stochastic model of 

electron, we demonstrate that the electron as stochastic oscillator (system in 

accelerated motion) “sees” the stochastic Classical Zero-Point Field (CZPF) as a 

Planckian field with temperature equal to the anticipated de Broglie temperature 

( 2
o BT mc k ). Using the event horizon for a small bubble in vacuum that 

oscillating frequency equal to zitterbewegung frequency, we show that it behaves 

like an electric charge that have a stochastic motion and scattering the stochastic 

Classical Zero-Point Field (CZPF). 
 

Keywords: Broglie's hypothesis; event horizon; Classical Zero-Point Field. 

 
 

1. Introduction 

 

The article is trying to establish a link between the isolated particle 

thermodynamics and the acceleration horizon in the framework of stochastic 

physics. 

Louis de Broglie, in order to explain quantum effects as an interaction 

of microscopic systems with a sub-quantum environment, proposed a 
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thermodynamics of the isolated particle, i.e. the hidden thermodynamics of 

isolated particles (de Broglie, 1961; de Broglie, 1967) in which the particle is 

modelled as a thermodynamic system in interaction with the sub-quantum 

medium (the stochastic medium).  

In the stochastic electrodynamics (stochastic physics of the charged 

particles), stochastic environment is modelled as a homogeneous and isotropic 

background of electromagnetic waves having randomly distributed phases.  

Because this background is analogue the of the zero fluctuations 

background of the vacuum in quantum electrodynamics, was named Classical 

Zero-Point Field-CZPF (Puthoff, 1989; Boyer, 1969; Rueda, 1978; Rueda and 

Lecompte, 1979; Rueda, 1981; Rueda and Cavalleri, 1983). 

To an accelerated observer (non-inertial) the electromagnetic radiation 

background with the zero temperature is perceived as a background of thermal 

radiation with temperature proportional to acceleration. This phenomenon is 

known as Unruh-Davies effect (Unruh, 1976; Davies, 1975). Timothy M. Boyer 

deduced the formula expressing the thermal radiation temperature depending on 

acceleration in the framework of the stochastic electrodynamics (Boyer, 1980). 

In the second part of the paper we determine the average temperature 

corresponding to the modelled particles as an oscillator electrically charged in 

interaction with CZPF. 

In the third part, we demonstrate that the angular frequency 

corresponding to the maximum (per Wien's displacement law) the Planckian 

background attached of the particle is angular frequency own of particle 

(modelled as a stochastic oscillator). 

In the fourth part, we analyse the properties of the acceleration (Rindler, 

2001) for a system (a particle) in oscillatory motion. We obtain the expressions 

of energy densities and the radiation entropy from the particle horizon. With 

these get to the expressions of energy, entropy and power corresponding to the 

particle horizon. 

In the fifth part, we study the problem of the stochastic model horizon 

of electron and we find results like those of the second part. 

The sixth part is devoted to discussions and conclusions. 

 

2. The Average Temperature Corresponding to a Particle in 

 Interaction with CZPF 

 

A particle with the electric charge eq  and mass m is modelled like an 

oscillator with the natural angular frequency 0  in interaction with the CZPF 

background of vectors (Simaciu et al., 1995; Simaciu and Ciubotariu, 2001). 
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Below the action of CZPF (fund) background, the particle running a 

nonrelativistic oscillatory motion given by the equation 

2
0 0

q
r r E r

m
   

    ,                                      (2) 

with the radiation damping coefficient 
2 3 2 3

06 2 3q mc e mc   . 

The solution of this equation is 

 0

q
r E

Dm



, (3) 

with 
2 2 3
0D i       and  

22 2 2 2 6
0DD D       . 

The acceleration of the oscillator is 
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The average acceleration (we average after the random phase) is zero 

and the average square of the acceleration is 
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Substituting the expression of the electric intensity of CZPF background 

(1a) in  24 2
0E D


  result that 
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If we replace in (5) the section of scattering of the plan-polarized 

radiation by the particle 
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result that 
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Substituting (7) in (4) we obtain as follow 
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Excepting a factor of the unity order that depends of the expression the 

scattering section of an isotropic background, according to the paper (Simaciu 

and Ciubotariu, 2001) integral 

 ( ) ( )a e îP P P c d         , (9) 

represent scattered power (the power absorbed is equal to the radiated power 

and therefore the CZPF background is scattered by oscillator) by the oscillator 

from CZPF. 

Replacing (9) in (8) result the Larmor relationship (Jackson, 1975) 
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If is calculated the absorbed power according to the equation (9), result 
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Equalling the two relations we obtain expression of the mean square 

acceleration 

 
3

2 03
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and the average acceleration of the oscillator is 

 2 0
0

3
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m
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According to the works (Boyer, 1984), for particle accelerated the 

CZPF background becomes a Planckian background with temperature 
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which also includes of the zero-point field. 

Replacing (13) in (14) result: 
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If the total energy of the oscillator (as a two-dimensional system with 

two degrees of freedom) is 

 
2

0mc   , (16) 

replacing (15) result: 
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, (17) 

i.e. the oscillator acts as a particle submerged in a thermostat having the 

temperature proportional to the mass of the oscillator (de Broglie, 1961; de 

Broglie,1962). 

A similar result is obtained according to the approach made by 

Feynman (Feynman, 1964, Ch. 41, § 2) of an oscillator charged in interaction 

with the of equilibrium thermal radiation having the temperatureT . 

According to the relation (41.4) from (Feynman, 1964), the power 

radiated by an oscillator is proportional to the energy of the oscillator oW  
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If the oscillator is in equilibrium with a thermostat having the 

temperature T , its average (medium) energy is 

 2
2

B
o B

k T
W k T  , (19) 

for a one-dimensional oscillator. 

Replacing (19) in (18) result 
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If the oscillator is in interaction with CZPF background, absorbed power 

is given by (11). Equalling (18) with (11) result the zero energy of the oscillator 

 03
2

oW 
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. (21) 

Since the power absorbed was calculated for a three-dimensional 

oscillator, result that the energy for a one-dimensional oscillator in interaction 

with CZPF is 

 0
1

2
oW 


. (22) 

 

3. The Wien's Displacement Law for the Thermostat 

 Attached of the Particle 

 

According to Wien's displacement law (Boyer, 1984), the Planckian 

background attached of the particle has a maximum for the wavelength 
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Replacing the expression of the oscillator temperature (17) in (23b),  

result the remarkable relationship 
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mc x x
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
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Relation (24) demonstrates that the particle, as oscillator, absorbs and 

emits resonant from CZPF background, the natural angular frequency being 

angular frequency for which Planckian background has the spectral density 

( , )T  . 
 

4. The Properties of the Acceleration Horizon 
 

4.1. The Horizon of a System in Accelerated Movement 

 

A system in accelerated motion on Ox  the direction, with acceleration 

a , perceive a horizon at distance (Rindler, 2001), 

 
2

o

c
d

a
 . (25)  

The horizon is a plane perpendicular to the direction of movement 

located at distance given by (25)  

From physical point of view, the existence of horizon is interpreted as 

limit until which the system can interact through fields that propagate at the 

speed of light. Systems located beyond the horizon, ox d , no longer interact 

with the system located in the origin of coordinates - are not causally related to 

accelerated system. In this case, area and volume of the horizon are infinite 

because on directions in the sense of the acceleration, horizon radius is infinite. 
 

4.2. The Horizon of a System in Oscillatory Motion 

 

Either a physical system which accomplish an oscillatory movement by 

amplitude 0q  and the angular frequency   

   0 sin( )q t q t  . (26) 

Acceleration of this system is 

 
2 2

0 sin( )q q t q     . (27) 

We consider that a particle in the physical vacuum is a bubble 

(Leighton, 1994). The radius of this bubble is at equilibrium R . The bubble 
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executes under the action of the vacuum waves radial oscillations of instant 

amplitude q R , given by (26). 

An observer at instantly rest on the surface of the bubble perceives a 

horizon of the acceleration by spherical form with variable radius.  

Replacing equation (27) in the expression of the horizon distance result 

  
 

2 2

2 2
0 sin( )

o

c c
r t

q t q t
 
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 (28) 

and  2 2
0 oc q r t  . 

The horizon radius relative to the centre of the bubble is 

    
 
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2o o

c
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
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This radius of the horizon mediated in time can be calculated using the 

average acceleration of the horizon surface 
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q
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
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With this average acceleration, average radius of horizon as against the 

bubble centre is 
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The average area of horizon is  

 

2
2

2 2

2
0

2
4 4 1m m

c
A R R

Rq

 
    

 
 


 (32) 

and  
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is the volume of the accelerate horizon. 

 
4.3. Energy's and Entropy's Densities 

 from Particle Horizon 

 

 The observer from bubble surface perceives the CZPF background of as 

a of background of thermal radiation having temperature proportional to 

acceleration, according to the relation (14). 

The energy density of this radiation is 

 44 SBw T
c




. (34) 

Replacing (14) in (34) result 
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Because the Stefan-Boltzmann constant has the expression 
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resulting, through replacement within (35) 
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The expression of entropy density of the radiation is 

  
4
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Replacing (14) and (36) in (38), result 
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4.4. Energy, Entropy and Power of Particle Horizon  

 

The energy contained by the horizon with radius given by the relations 

(31) and having the volume given by (33) is, with ma a  

 

3
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The entropy contained in the horizon volume is with (33) and (38), for 

ma a  
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We find corresponding power for this radiation considering that is 

emitted through the area the horizon (32), with ma a  
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If we consider approximation of small oscillations, that is oq R ,

0c q   and 
2 2

0 1Rq c  , result that entropy from volume of the horizon 

is a constant 

 
4

4(1,082)
( )

3
mS a k


 (43) 

and dispersed power (absorbed and emitted, at equilibrium) is of Larmor type  
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i.e. it is power emitted of an accelerated electric charge. According to the 

classical theory, a charged particle with electrical charge and which is a in an 

accelerated motion radiates a power given by Larmor relation (Jackson, 1975) 
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Comparing relations (45) and (46), result, with ma a  
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c
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The difference between the two values is relatively small: 
2 1 137e c   and    2 53 1,082 2 1 102 . Improving the model can lead to 

parameter values which determine the equality of constants. 

 
5. The Horizon of Stochastic Model for Electron 

 

In stochastic physics (Simaciu and Ciubotariu, 2001) the electron is a 

two-dimensional oscillator (circular motion), that changes the plan of the 

circular motion with zitter frequency (equivalent of movement on a sphere). 

Result that this model is just a case of generating a spherical acceleration 

horizon. 

According to this model, the speed on orbit is c , and replacing in 

(25) and (29) with eR R  result the centripetal acceleration and the horizon 

radius: 

 
2

ce

e

c
a

R
 , (47) 

 
2

2 2oce e

ce

c
R R

a
  . (48) 

Replacing those sizes in the energy expressions (40) and power (42), 

with m cea a a   result 

 

2

5

2 (1,082)
( ) ( ) ( )e ce ce ce ceW a V a w a a

c
 




, (49) 

 
2

5 2

(1,082)
( )e ce ceP a a

c





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Outside of the acceleration horizon, is issued radiation with power 

given by relations (50 and 51). According to the classical theory of the oscillator 
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electrically charged, this radiates a power given by relation (45) which 

becomes, with cea a , 
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Comparing the expression (51) with expressions of power emitted by 

the accelerating horizon (51) or (50), result that power issued of the horizon 

could be interpreted as the power radiated by oscillator, if the coefficients front 

the expression 
2/cea c  are equal. These coefficients have the values: 

 
2

32
4,86 10

3

e

c

 
  

 
, 

3
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
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The coincidence of expressions powers is not accidental. We found the 

result from Section 4.4. An analysis more exact for mechanisms for the 

generating of horizon for a system which execute a moving of oscillation three-

dimensional, is likely to lead to better coincidence of the powers relations. 

If we replace in the expression (49) the acceleration corresponding to 

the model of electron, 
3/ , /e e ce eR m c a m c    result: 

 

32 2
2

5 5

2 (1,082) 2 (1,082)
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It follows that there is a connection between the thermal radiation 

energy captured in the volume of horizon and energy electron
2

em c . 

 

6. Discussion and Conclusions 

 

We emphasized the fact that de Broglie's hypothesis about the existence 

a thermodynamic of the particle is correct. In the case of electron stochastic 

model, we demonstrated that the electron as stochastic oscillator and therefore 

system in accelerated motion “sees” the CZPF background like a Planckian 

background with temperature equal to the anticipated one by Broglie 

( 
2

o BT mc k ). 

It is interesting that the angular frequency corresponding to the 

maximum of spectral density of the Planckian background is equal to the natural 

frequency of the stochastic oscillator (expression 24). This behaviour of the 

stochastic oscillator is consistent with bubble model (a hole in the physical 

vacuum) oscillating radially, for an electrically charged particle. The 

oscillations are induced and maintained by the interaction of the bubble with the 

zero oscillations of the vacuum. At equilibrium bubble absorbs and emits waves 

with angular frequency nearly, as size, to the natural frequency. For electron, 

this is the zitterbewegung frequency. According the results section 4 and 5, the 

two models, punctual task that absorbs and emits radiation of CZPF (in other 
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words scattered this radiation) and the bubble in vacuum radial's oscillating 

(centre bubble's is at rest) are equivalent. 

Two such bubbles interact with forces of attraction or repulsion, 

depending on the phase difference of the oscillations. This phenomenon is 

known in acoustic as Bjerknes secondary interaction (Bjerknes, 1906; Bjerknes, 

1915; Bărbat et al., 1999). This interaction has been studied theoretically and 

experimentally only in case the two bubbles are in the field of plane acoustic 

waves that propagate or is stationary. The highlighting a task acoustic electric 

type is made only studying the interaction two bubbles with a thermal 

background of acoustic waves. In this case the bubble absorbs energy from the 

background, at resonance, for natural frequency. This acoustic model will be 

studied in a future study. 

The existence of a spherical horizon, for the particle models proposed in 

the paper, brings into question and the existence of gravitational charge 

corresponding to the particle. This connection exists because the gravitational 

interaction for a body with mass involves a horizon of events in case collapsing at a 

radius equal to the Schwarzschild radius (the radius of black hole) (Rindler, 2001). 
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ORIZONTUL ACCELERĂRII ȘI TERMODINAMICA 

 PARTICULEI IZOLATE 

 

(Rezumat) 

 

În lucrare demonstrăm că ipoteza lui de Broglie a existenței unei 

termodinamici a particulei este corectă. În cazul modelului stocastic de electron 

demonstrăm că electronul, ca oscilator stocastic și deci sistem în mișcare 

accelerată, “vede” fondul CZPF ca un fond planckian cu temperatura egală cu cea 

anticipată de Broglie ( 2

o BT mc k ). Folosind orizontul evenimentelor, pentru o bulă 

din vacuum care execută mici oscilații egale cu frecvența de zitterbewegung, arătăm că 

aceasta se comportă ca o sarcină electrică care se mișcă stocastic și împrăștie Classical 

Zero-Point Field (CZPF). 

 

 


