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Abstract. In this paper, we analyze the phenomena that occur in a medium 

where the energy and information travels at the speed of mechanical waves. 

Disturbances are generated, evolves and propagates in the medium correlates 

with the acoustic waves (mechanical) having the maximum speed. The material 

environment and the disturbances that occur in it (waves, wave packets, bubbles, 

etc.) represents the acoustic world. We demonstrate that the wave has the 

equivalent mass. The equivalent mass of waves is linked to energy by an 

Einstein type relationship. Events in the acoustic world are linked by Lorentz 

type transformations. Studying the behavior of standing waves relative to an 

accelerated observer (Rindler observers) show that the equivalent mass of the 

wave is the inertial mass. For propagating waves, between linear momentum and 

generalized momentum (action variable) we find a de Broglie type relationship 

where the wave momentum is proportional to the wave number and the 

coefficient of proportionality is the action variable.  
 

Keywords: mechanical waves; Rindler observers; equivalent mass of 

waves; de Broglie relation.  
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1. Introduction 

 

For an electromagnetic universe, i.e. a universe those material systems 

and phenomena are correlated through electromagnetic waves and all events in 

different reference frames are linked by Lorentz transformations for inertial and 

by Rindler transformations for non-inertial systems. In the acoustic world, that 

universe where systems (waves, wave packets, bubbles, etc.) and mechanical 

phenomena are related by where events are linked by Lorentz type 

transformations for inertial and non-inertial systems Rindler type 

transformations. These transformations are obtained from the Lorentz and 

Rindler transformations replacing the speed of light c with speed of mechanical 

waves u . In the acoustic world, it was highlighted the existence of acoustic 

holes like black holes (gravitational and electromagnetic holes) (Unruh, 1995; 

Weinfurtner et al., 2013; Visser, 1998; Barceló et al., 2010; Barceló et al., 

2011; Nandi et al., 2004). Observers from acoustic world have senses which are 

based on the perception of mechanical waves (any form of mechanical 

perturbation) and instruments that detect and acquire all information through the 

same type of wave (Nandi et al., 2004). Their measurements for time and length 

(and other parameters) are linked by Lorentz type transformations where the 

maximum speed is the speed of acoustic waves. Applying these transformations 

to the of standing waves packet, that energy, mass, linear and generalized 

momentum undergo relativistic changes. 

In the second section, we calculate the energy of the wave that 

propagates in a fluid and the same calculations for standing wave. We calculate 

the macroscopic parameters of oscillators having a length equal to one half-

wave (tube closed at both ends) or quarter wavelength (tube closed at one end 

and open at the other). For these oscillators, can define and calculate when 

generalized momentum (action variable) corresponding to the oscillation 

energy. The same parameters are calculated based on the constituent particles 

(atoms, molecules) energy and action. 

In the third section, we express the energy as a function of the wave 

propagation speed. It highlights the existence of an equivalent mass of wave and 

Einstein type relation between energy and the mass. Also, the linear momentum 

of the wave (for wave that propagates) is defined. Between this linear 

momentum and generalized momentum (action variable) exist a de Broglie type 

relationship that is, the wave’s momentum is proportional to the wave number, 

the coefficient of proportionality is the action variable. 

The fourth section we study how to transform energy, mass, linear 

momentum and action variable of standing waves relative to an inertial observer and 

relative to a non-inertial observer. We highlight a rest mass and rest energy also a 

relativistic mass and energy (in inertial motion). Using Rindler type transformations, 

we show that the macroscopic oscillators equivalent mass is the inertial mass. 

The fifth section the conclusions are presented. 
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2. Mechanical Waves 
 

2.1. The Standing Wave in Gas 

 

Consider a gas found in an tube-form enclosure with section x yS l l  

and length much greater than the transverse dimensions ,z x yl l l . The gas has 

the following properties: temperature T, pressure 0p , density 0  and mass

0 xy zm S l  . From a microscopic point of view, the gas is constituted of 

particles (atoms, molecules, etc.) with the mass am and density of the particles 

0n  so the density is givenby 0 0 an m . 

The speed of propagation of mechanical waves in fluid is (Landau and 

Lifchitz, 1971, Ch. 8): 

 
S

p
u

 
  

 
 (1) 

For a gas, the wave propagation is an adiabatic process (constant 

entropy S ) and  
S

p   can be expressed by adiabatic coefficient according 

to relationship 

 
p

VS V V

cp p p

c

       
      

       


  
. (2) 

For a perfect gas, the speed becomes: 
 

 B

a

k T
u

m



. (3) 

 

If the tube is closed at both ends, there is created a longitudinal standing 

wave. The allowed modes are given by the expression of wave number 

(provided that the length of the rod to be equal to an integer of half-wavelength 

2; 1,2,3,......zl j j  ) 

 ; 1,2,3,......j

z

k j j
l

 


. (4) 

 

From the definition of the wave phase velocity 
 

 u
k




, (5) 

 

results the expression of angular frequency for mode j
 

 

 j j

z

u
uk j

l
 


 . (6) 

 

The quantity 
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 min

z z

u u

l aN
 
 

 . (7) 

is the minimum angular frequency corresponding mode 1j  . 

The quantity 

 max

z

u u

l a
 
 

  (8) 

is the maximum angular frequency corresponding mode zj N . In relations (7) 

and (8), the quantity a  

 3a n . (9) 
 

is the average distance between gas particles at pressure 0p . 

To the angular frequencies given by (7) and (8) correspond to the 

wavelength of maximum 

 max 2 zl  (10) 
 

and the minimum wavelength 

 min 2a . (11) 
 

For a tube closed at one end, the length of the macroscopic oscillator is 

4 because the modes are  2 1 4; 0,1,2,3,...zl j j   . 

 
2.2. The Energy of Oscillation of the Standing Wave 

 
For a longitudinal standing wave (Butikov, 2013), each element of 

length dz and mass dm Sdz  executes an oscillatory movement and has kinetic 

energy (   0, sin( )sin( )s sz szz t q q kz t    ) 
 

 

2

2 2 2 2
0

1 1
sin ( )cos ( )

2 2

sz
k sz

q
dE dm dmq kz t

t

 
  

 
   (12a) 

 

and the potential energy 

 

2

2 2 2 2 2
0

1 1
cos ( )sin ( )

2 2

sz
p l sz

q
dE dmu dmq kz t

z

 
  

 
  . (12b) 

 

In the above relations, szq is instantaneous amplitude and 0szq  is 

maximum amplitude. 

The total energy is 
 

 2 2 2 2 2 2
0

1
sin ( )cos ( ) cos ( )sin ( )

2
k p szdE dE dE dmq kz t kz t        . (13) 

 

With (13), the oscillation energy of the gas in the tube is 
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2 2 2 2 2 2
0

0

2 2 2 2
0 0

1
sin ( )cos ( ) cos ( )sin ( )

2

1 1
.

4 4
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z sz sz

E Sq kz t kz t dz

Sl q mq

    
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 (14) 

For mode j , with 2j zl j , the gas energy in the tube in standing 

wave mode is 

 2 2 2 2
0 0 2

1

8 2 4 j

j

j x y szj j j a szj j aj

j
E l l q j Sn m q jN E

  
    

  



     (15) 

 

with 2j
N the number of microscopic/atomic oscillators from a portion of the 

tube with length equal to a half-wave 

 2
2j

j
N Snj


 (16) 

and 

 2 2
0

1

4
aj a szj jE m q   (17) 

the energy of a microscopic (atomic) oscillator. 

Because the wavelength can be expressed by the speed of propagation 

u  and pulsation j  

 
2

j

j

u






, (18) 

results, replacing in Eq. (15), the energy of the gas, as a macroscopic oscillator, 

is proportional to the angular frequency 
 

 2
0 2

4 jj szj j jE j Sq u jJ
 

  
 




   . (19) 

 

From analytical mechanics (Fasano and Marmi, 2006, p. 431) the 

energy of the oscillator using harmonic coordinates (the action-angle variables) 

has the expression (19) where 

 2
2 0 2

1

2 4j j

j

a zj j ajJ Sn m q N J
  

   
  

 


  (20) 

it is generalized momentum (the canonical action variable) and 
 

 2
2 0 2

4j jszj j jE Sq u J
 

  
 

 


    (21) 

 

is the macroscopic oscillator energy corresponding to a half-wavelength. 

In Eq. (20), the parameter 

 2
0

1

4
aj a zj jJ m q   (22) 
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is the generalized momentum (the canonical action variable) for microscopic 

(atomic) oscillator energy is given by (17). 

For a given material, the oscillator energy and generalized momentum 

have the lowest value for thermal oscillations in solids, and thermal motion in 

fluids at temperature 0KT  . 

The perturbations (the waves and waves packets formed through 

interference-diffraction) in this environment, an "acoustic world", are correlated 

with the maximum speed, the speed of waves in the environment. Oscillations 

produced in this material overlap these perturbations and thermal movements. 

In this world, the group velocity of the perturbations (the speed with which 

propagates the amplitudes) is less (or equal) than the speed of waves, 

g u   . It follows that the lowest values of generalized minJ momentum and 

energy minE  

 2
min 0

1

2
aT a zT TJ J m q   , (23) 

 2 2
min 0

1

2
aT a zT TE E m q    (24) 

 

correspond to thermal oscillations for microscopic oscillators. 

 
2.3. The Oscillation Energy of the Bar in Presence of a Wave 

 

For a wave with frequency   and the maximum amplitude 0zq ,

   0, sinz zz t q q t kz    , which propagates in the gas founded in a tube 

(the tube has zl   ), the tube can be considered as a system of oscillators of 

length 2 . Using the same relations (12) and (13) for kinetic, potential and 

total energy of a half-wave is 

 2
2 0 2

2
zE Sq u J

 
  
 

 


    (25) 

and generalized momentum (the canonical action variable) is 
 

 2
2 0

2
x y zJ l l q u


 . (26a) 

or 

 
2 2

2 02 zJ Sq u   . (26b) 
 

The energy and the generalized momentum can be expressed as 

function of microscopic quantities: mass of atoms am and density n  
 

 2 2
2 0 0 2

2 2
a z a z aE nm Sq u nS m q u N E

    
      
    

 

  
 


 (27) 
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 2
2 0 2

2
a z aJ nS m q u N J

  
   
  

 

 


, (28) 

 

with 2N - the number of atoms in the volume 2V S  , 

 2 2
0 2a a z aE m q J   - the energy, 

 
2 2
0 02a a z a zJ m q m q u    - the 

generalized momentum for microscopic/atomic oscillator given by the relations 

(17) and (22). 

 
3. The Equivalent Mass of the Wave 

 

3.1. The Mechanical Wave Mass 

 

The macroscopic oscillator energy given by (25) can be expressed in 

terms of the velocity, considering the relation (5) 

 
2

2 2 2 20
2 0

2

z
z

q
E Skq u S u

  
    
   




  


. (29) 

Introducing the notion of equivalent mass for a macroscopic oscillator 

corresponding to a half-wavelength 

 

2 2

22 0 0
, 2 0

2
2

2 2 2

z z
u z

mq q
m Skq S

    
      
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



  
 

 
 , (30) 

with  2 / 2m S    the mass of macroscopic oscillator’s substance (gas), we 

can write an Einstein type expression for energy (Feynman et al., 1964, Ch. 

15.9) 

 
2

2 , 2uE m u  . (31) 

The linear momentum along the Oz  direction corresponding to 

macroscopic oscillator, is 

 , 2 , 2z up m u  . (32) 

We can define also a linear momentum for wave, that is the root mean 

square of internal oscillation momentum (averaged over time and space) of 

atomic oscillators (usually, microscopic oscillators). From the momentum of an 

atomic oscillator 

  0 cosz
a a a z

q
p m m q t kz

t


  


  , (33) 

the root mean square atomic momentum is 

 
2

0
,

1

2
a a a z

z t
p m q  P . (34) 

The internal macroscopic momentum is the total momentum 

corresponding to the oscillators from a half-wavelength 
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2 2 2

a u z

z z

nS m u p
q q

    
      
     

  

  

 
P P  (35a) 

or 

 0
2 2

21

2

z
l

q
m u

 
  

 
 




P  (35b) 

and it is much higher than the wave momentum (32), for 0zq . 

The ratio of the linear momentum of the oscillator (32) and action (26) 

is 

 
, 2

2

zp
k

J






 (36) 

a relationship between momentum and wave vector analogous to the photon 

(Bransden and Joachain, 1989, Ch. 1.3). 

 
3.2. The Mass of Standing Wave 

 

The 
thj  harmonics of standing wave in the gas-filled tube isa 

macroscopic oscillator corresponding to this tube is consisting of j  half-

wavelengthmacroscopic oscillators have, according to the relations (21) and 

(31), the energy 

 

22
02 2 2

2 0
4 2j

szj

x y j szj x y

j

q
E l l k q u l l u

  
         



 
 


. (37) 

The equivalent mass, corresponding to this oscillator is 

 

2
22

20 0

2

2

2 4

j

j

szj szj

us x y

j j

mq q
m l l

 
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 
 








 
. (38) 

Linear momentum along Oz  direction and the total mean momentum 

are null. 

For the standing wave, we can define an internal linear momentum as 

root mean square momentum (averaged over time and space) of atomic 

oscillators (usually, microscopic oscillators). The momentum of an atomic 

oscillator in the standing wave is 

 0 sin( )cos( )
szj

aj a a szj j j

q
p m m q k z t

t


 


  . (39) 

Root mean square atomic momentum averaged in space and time is 

 2
0

,

1

2
aj aj a szj j

z t
p m q  P . (40) 

The internal macroscopic momentum is the corresponding total 

momentum of oscillators from a half-wavelength 
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x y aj us

szj j

q
n l l m u m u

q

    
          
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  

  

 
P P . (41) 

 

This momentum is different from expression (35) by the amplitude 

value ( 0 0szj zq q , for the standing wave with wavelength j  amplitudes are 

related by 0 02szj zjq q ) of the wavelength j   . 

 

4. The Inertial Mass of Wave 
 

4.1. The Standing Wave Relative to an Inertial Reference System 

 

For an observer moving with constant velocity , the standing wave 

(   0, sin( )sin( )s sz szz t q q kz t    ) is an amplitude modulated waveform 

(Elbaz, 1986; Kracklauer, 1999) 
 

    0 0 0 2
, sin sinsz sz u uz t q q k z t t z

u

  
         

  


    . (42) 

 

The wave is characterized by: angular frequency 
 

 0 0u     , (43) 

the wave vector 

 
0 0uk k k

u
 


  (43) 

and the phase velocity 

 

2u
u

k






   . (44) 

 

The wave amplitude is modulated by: modulation frequency 
 

 
mod 0 0u uk

u


        ; (45) 

 

the wave vector 

 mod 0uk k   (46) 

and group velocity equal to the speed of the observer 

 mod

mod

g u
k


    . (47) 

The amplitude of oscillation is modulated ( modq   0 0sinsz uq k z t     ) 

and the corresponding wavelength is 
 

 0
mod 0

mod

2

uk
  


 


. (48) 
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The relationships above are obtained using Lorentz transformations and 

Doppler displacement relations, replace the mechanical speed of light c with the 

mechanical wave propagation velocity u . 

 
4.2. The Waves Relative to a Non-Inertial Referential System 

 

To deduce the physical significance of the equivalent mass for wave 

given by Eq. (29), we deduce the expression of wave energy and mass relative 

to anaccelerated system. 

Consider an accelerated reference frame  , , ,S x y z t     characterized by 

acceleration vector  0,0, za a a


relative to an inertial reference frame. The 

relations between z , t and proper time  , relative to the reference frame 

instantly found the rest of the accelerated observer, Rindler observer (Rindler, 

2006; Alsing and Milonni, 2004) 

    
2

sinh , cosh
u a u a

t z
a u a u

   
    

   

 
  , (49) 

Relative to the reference frame being in instantly rest of the observer 

(the instantaneous rest frame of the observer) angular frequency  has the 

expression: 

  
 

 2 2
exp ,

1

k a
k

u uu

  
    

 

    
  

 
, (50a) 

for waves that propagate towards the observer acceleration  

   exp ,
a

k
u u

 
    

 

 
    (50b) 

and for waves that propagate in the opposite direction of acceleration observer. 

To deduce the half-wavelength energy corresponding to a wave 

(Eq. (25)) relative to the Rindler observers consider that the generalized 

impulse is Lorentz invariant 

 2 2J J   . (51) 

In those conditions, the expression of energy (25) transform same as 

pulsation (50) 

 2 2 2E J J        . (52) 

Substituting (50) in the expression (52) gives 

 2 2 2exp exp
a a

E J E
u u

   
     

   
  

 
 . (53) 

The corresponding power relative to Rindler observer is 

 
2

2 2 2P exp
dE a a

E F u
d u u

    
      

   

 

  




. (54) 
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From the Eq. (54), results 

  
2

2 2
exp

E a
F a

uu

 
   

 









. (55) 

Substituting in (55), the expression of equivalent mass of the wave, 

according to the Eq. (30), gives 

    2 , 2 , 2expu u

a
F a m a m

u

 
   

 


   


. (56) 

From Eq. (56), results that the inertial mass relative to the Rindler 

observer is dependent on proper time  

  , 2 , 2, expu u

a
m a m

u

 
   

 


 


 . (57) 

and  , 2 , 2 0u um m a   , the inertial mass of the wave relative to the un 

accelerated observer  , , ,S x y z t , is the equivalent mass of the wave. It is 

observed that the equivalent mass wave has the same transformation 

expressions as energy and angular frequency. 

 
5. Conclusions 

 

The energy carried by a mechanical wave depending on the speed of 

propagation highlights the existence of an equivalent mass of wave. The two 

quantities are linked by an Einstein type relation. This mass is analogous with 

the mass of electromagnetic wave. The mechanical wave has also a linear 

momentum and an action which are connected by an analogous relation to the 

momentum and the wavelength of photon. 

The standing wave is characterized by an energy and an equivalent rest 

mass connected by an Einstein type relation. 

Relative to a moving observer the standing wave is a wave that carries 

energy with transport speed of reference frame in the opposite direction of 

movement. The relations between the quantities of the standing wave and 

progressive wave are Lorentz type transformations, the speed of light is 

replaced with the mechanical wave propagation speed in the medium. The 

relationship between energy and equivalent mass of progressive wave is 

Einstein type. The action corresponding to the standing wave has the same 

expression as progressive wave, i.e. it is invariant under Lorentz type 

transformations. The progressive wave momentum defined as the equivalent 

mass multiplied by the propagation velocity has a de Broglie type relation with 

invariant action. 

Studying the behavior of standing wave compared with an accelerated 

reference frame (Rindler transformations), demonstrate that the equivalent mass 

of the wave is an inertial mass (a measure of mechanical inertia of system). 



62                                                              Ion Simaciu et al. 
 

 

A substantial medium where propagates mechanical disturbances is an 

acoustic universe and the maximum energy and information propagation speed 

is the mechanical waves speed in undisturbed environment. All the phenomena 

that take place in this acoustics world are causally correlated with the same 

speed. The coordinate and time transformations between two coordinate frames 

are Lorentz type transformation. The results of this paper are developed in the 

papers (Simaciu et al., 2015; Simaciu et al., 2016). 
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LUMEA ACUSTICĂ: INERȚIA MECANICĂ A UNDELOR 

 

(Rezumat) 

 

În această lucrare analizăm fenomenele care se produc într-un mediu material 

în care energia și informația se propagă cu viteza undelor mecanice. Perturbațiile care se 

generează și evoluează/propagă în mediu se corelează prin intermediul undelor acustice 

(mecanice) care au viteza maximă. Mediu material și perturbațiile care se produc în el 

(unde, pachete de unde, bule, etc.) formează lumea acustică. Noi demonstrăm că unda 

are masă echivalentă. Masa echivalentă este legată de energia undei printr-o relație de 

tip Einstein. Evenimentele din lumea acustică sunt legate prin transformări de tip 

Lorentz. Studiind comportarea unei unde staționare în raport cu un observator accelerat 

(observatorul Rindler), demonstrăm că masa echivalentă a undei este masa inerțială. 

Pentru unda care se propagă, între impulsul liniar și impulsul generalizat (action 

variable) există o relație de tip de Broglie adică impulsul undei este proporțional cu 

numărul de undă al undei, coeficientul de proporționalitate fiind acțiunea. 
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