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Abstract. A theoretical model is proposed, in the frame of Scale Relativity 

Theory, able to explain the phenomenon of self-modulation of a hollow cathode 

discharge plasma dynamics. In this model, the complexity of the interactions in 

the plasma volume was replaced by non-differentiability (fractality). Discharge 

plasma particles move free, without any constrains, on continuous but non-

differentiable curves in a fractal space. A Riccati type differential equation was 

obtained, describing the dynamics of a harmonic oscillator. The solution of this 

equation shows a frequency modulation through a Stoler transformation. The 

obtained results are in good agreement with the experimental ones. 
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1. Introduction  

 

Plasma discharges can be assimilated to complex systems taking into 

account their structural-functional duality (Mitchell, 2009). The standard 

models (fluid model, kinetic model, etc.) (Morozov, 2012; Chen, 2016) used to 

study the plasma discharges dynamics are based on the hypothesis of 

differentiability of the physical variables that describe it, such as energy, 

momentum, density, etc. But differential methods fail when facing the physical 

reality, such as instabilities of the discharge plasma that can generate chaos or 

patterns through self-structuring, by means of the non-differentiable (fractal) 

method (Mandelbrot, 1982; Hastings and Sugihara, 1993; Falconer, 2014). 

In order to describe some of the dynamics of plasma discharges by 

means of non-differentiable method, and still remain treatable as differential 

method, it is necessary to introduce the scale resolution, both in the expressions 

of the physical variables and the dynamics equations. This means that any 

dynamic variable become dependent also on the scale resolution. Such a 

physical theory was developed both in the Scale Relativity Theory with fractal 

dimension equals with 2 (Nottale, 1993; Nottale, 2011) and with an arbitrary 

constant fractal dimension (Dimitriu et al., 2015; Merches and Agop, 2016). In 

the field of plasma discharges, if we assume that the complexity of interactions 

in the plasma volume is replaced by non-differentiability (fractality), the 

constrained motions on continuous and differentiable curves in a Euclidian 

space of the plasma discharge particles are replaced with the free motions, 

without any constrains, on continuous but non-differentiable curves in a fractal 

space of the same discharge plasma particles. This is the reasoning by which, at 

time resolution scales large by comparing with the inverse of the highest 

Lyapunov exponent, the deterministic trajectories are replaced by a collection of 

potential states, so that the concept of “definite position” is substituted by that 

of an ensemble of positions having a definite probability density. As a 

consequence, the determinism and the potentiality (non-determinism) become 

distinct parts of the same “evolution” of discharge plasma, through reciprocal 

interactions and conditioning, in such a way that the plasma discharge particles 

are substituted with the geodesics themselves (Arnold, 1989; Hillborn, 2000). 

In the present paper, a non-differentiable theoretical model is 

developed, able to explain the phenomenon of self-modulation of a plasma 

dynamics, experimentally observed in a hollow cathode discharge in connection 

with the development of two space charge structures. 

 

2. Theoretical Model and Discussion 

 

In the frame of Scale Relativity Theory with an arbitrary constant 

fractal dimension, the dynamics of discharge plasma can be described by means 

of the covariant derivatives (Nottale, 2011): 
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In the above relations X
l
 are the spatial fractal coordinates, t is the non-

fractal time coordinate, having the role of motion curve affine parameter, dt is 

the resolution scale, 
l

V̂  is the velocity complex field, V
l
 is the differentiable 

component of the velocity complex field, which is independent on the 

resolution scale, U
l
 is the non-differentiable component of the velocity complex 

field, which is dependent on the resolution scale, D
lk
 is the fractal – non-fractal 

transition pseudo-tensor, dependent, through stochastic fractalization, either on 

the “forward physical processes” 
l



, or the “backward physical processes” 

l


, 

DF is the fractal dimension of the motion curves. For DF one can choose 

different definitions, i.e. the fractal dimension in a Kolmogorov sense, 

Hausdorff-Besikovici sense, etc. (Mandelbrot, 1982; Barnsley, 1993), but once 

chosen a definition, it has to remain constant during the whole analysis of the 

discharge plasma dynamics. 

For fractalization through Markov type stochastic processes, i.e. for 

Levy type movement of the discharge plasma particles (Mandelbrot, 1982; 

Barnsley, 1993), the fractal – non-fractal transition pseudo-tensor becomes 

 

4lk lkD i  ,                                                  (3) 

 

where λ is the “diffusion coefficient” associated to the fractal – non-fractal 

transitions (Merches and Agop, 2016) and δ
lk
 is the Kronecker pseudo-tensor. In 

this case, the scale covariant derivative (1) takes the form 
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Postulating now the scale covariance principle, according to which the 

physics laws in their simplest representation are remaining invariant with respect 

to the scale transformations, the states’ density conservation law becomes 
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or more, separating the movement on the scale resolution 
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for the differentiable scale resolution and 
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for the non-differentiable scale resolution. From such a perspective, the fractal – 

non-fractal dynamic transition of the states’ density can be obtained by 

summing Eqs. (6) and (7), taking the form: 
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From here, by means of compactification of the movements at the two 

scale resolutions V
l
 = U

l
, the fractal type diffusion equation become: 
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Let us now use Eq. (9) to analyze the dynamic of an electron beam 

accelerated in a strong electric field which impinges onto a neutral medium. As 

a result of these interactions, ionizations are produced both by the primary 

electrons (from the beam), αj, where α is the primary ionization coefficient and j 

is the beam current density, and by the secondary electrons which result from 

the direct ionization processes, βjρe, with β the secondary ionization coefficient 

and ρe the electron density. In these conditions, the focus is placed on the study 

of the dynamics induced only by the electronic branch, through Eq. (9) written 

in the following form: 
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Since the previous dynamics implied a one-dimensional symmetry, Eq. (10), by 

means of substitutions 
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becomes a damped harmonic oscillator type equation: 
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Eq. (12) induces a two-dimensional manifold of phase space type (p,q), 

in which p would corresponds to a “momentum” type variable and q to a 

“position” type one. Then, the parameters M, R and K can have the following 

significance: 

i) M represents the “matricidal” type effects through the connection 

with ionization processes (both global, described by αj + βj, and local, described 

by βj) and through the fractal diffusion (described by  
2

1
FDdt


). All these are 

done with respect to a travelling wave type movement based on the self-similar 

dynamic solutions (
x

t
v

   ); 

ii) R represents the “dissipative” type effects through the connection 

with the ionization processes (both global, described by αj + βj, and local, 

described by βj); 

iii) K represents the “structural” type effects in connection with the 

ionization processes (only the global ones, described by αj + βj). 

The second equation from (13) corresponds to the momentum 

definition. Eqs. (13) do not represents a Hamiltonian system, since the 

associated matrix is not an involution (the matrix trace is not null). This 

statement becomes clearer if we put the system in its matrix form: 

 

2

1 0

R K
p p

M M
q q

 
             
 




.                                       (14) 

 

As long as M, R and K have constant values, this matrix equation 

written in the equivalent form evidences the position of the energy and thus of 

the Hamiltonian, which is, for this particular case, identified with the energy of 

the system obviously only for the cases in which the energy can be identified 

with the Hamiltonian. Indeed, from Eq. (14) it can be obtained 
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which proves that the energy in its quadratic form (the right hand of Eq. (15)) is 

the variation rate of the physical action, represented by the elementary area 

from the phase space. From here it results that the energy does not have to obey 

the conservation laws in order to act like a variation rate for the physical action. 

On can ask now what could be the conservation law, if it exists. To give 

an adequate answer, we first observe that Eq. (15) can be written as a Riccati 

type differential equation 
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Furthermore let us note that Riccati type Eq. (16) always represents a 

Hamiltonian system describing harmonic oscillator type dynamic 
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This is a general characteristic describing the Riccati type equation and 

the Hamiltonian’s dynamic (Arnold, 1989; Libermann and Marle, 1987). Eq. (9) 

can be reobtained by bulding from Eq. (18) the 1- differential form for the 

elementary area from the phase space for harmonic oscillator type dynamic. 

Regarding Eq. (15), it can be integrated by specifying the fact that the energy 

does not conserve anymore, but we find that another more complicated 

dynamics variable will be conserved (Denman, 1968): 
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It results that the energy is conserved in a classical meaning when either 

R becomes null, or the movement in the phase space is characterized by the line 

passing through origin and having the slope defined by the ratio between R and 
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M. Moreover, by comparing with the case of thermal radiation regarding the 

distribution function on a pre-established “local oscillators” ensemble, it results 
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where r is the correlation coefficient and 2 0w
u


  is the ratio between the 

thermal energy quanta, ε0, and the reference energy, u. Eq. (19) can be rewritten 

as: 
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From here we can emphasis the statistic character of the energy: the potential 

energy is constructed as a functional of a specific statistical variable. This 

variable is given by the ratio between the kinetic energy and the potential one of 

the local oscillator. 

Thus, we propose here such a “quantization” procedure (see Fig. 1a and 

1b) through the correlation of all statistical ensembles associated with “local 

oscillators” (Ioannidou, 1983), induced by mean of the condition 
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where k is the Boltzmann constant and T is the characteristic temperature of the 

thermal radiation, representing explicitly the connection between the “quanta” 

and the statistical correlation of the process represented by the thermal 

radiation. Moreover, the previous relation does not explicitly specifies the 

expression of the “quanta” in the weak correlation limit since as for r  0 it 

implies ε0  kTln2. In such a limit, the quanta and thus the frequency  

(through ε0 = h, where h is the Planck constant) is proportional with the 
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“color” temperature. We note that in our case the thermal radiation is identified 

with the thermodynamic equilibrium plasma radiation. 

 

 

 
 

Fig. 1 – “Quantization” procedure through correlation of all statistical ensembles 

associated with “local oscillators”: 3D dependences (a) and the contour plot (b). 

 

Since we are focused on identifying the dissipative forces, we will 

present a physical significance for the Riccati Eq. (16) by means of its 
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associated Hamiltonian system (18). Let us observe that Eq. (12) is the 

expression of a variation principle 
 

1

0

0

t

t

Ldt                                                   (24) 

 

regarding the Lagrangian 
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This represents the Lagrangian form of a harmonic oscillator with 

explicit time dependent parameters. The Lagrangian integral defined on a finite 

interval [t0,t1] is the physical action of an oscillator during that specific time 

interval, describing the difference between the kinetic and potential energy, 

respectively. In order to obtain Eq. (12), it is necessary to consider the variation 

of this action under the explicit condition in such a way that the variance of the 

coordinate at the interval extremes is null: 
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Even so, in order to obtain a closed trajectory, we need to impose a 

supplementary condition, for instance that the values of the coordinates at the 

interval extremes are identical: 
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Moreover, if this trajectory is closed in the phase space, it will result 

that the same condition will be true also for velocities. 

Let us focus now on the movement principle and on the movement 

equation. The Lagrangian is defined until an additive function, which needs to 

be derivative in respect to the time of another function. The procedure is largely 

used in theoretical physics by defining the gauge transformation. Let’s define a 

gauge transformation in which the Lagrangian is a perfect square. This is known 

and explored in the control theory (Zelkin, 2000). The procedure consists in 

adding the following term to Lagrangian 
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where w is a continuous function in time, so that the Lagrangian is a perfect 

square. The function variation given by the derivative operator is null, only due to 
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the conditions presented in Eq. (27), thus the motion equation does not change. 

The new Lagrangian written in relevant coordinates takes the following form: 
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with the condition that w need to satisfy the following Riccati type equation: 
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Lagrangian depicted in Eq. (29) will be considered here as representing 

the whole energy of the system. As before, there is a relationship between the 

Riccati Eq. (30) and the Hamiltonian dynamics. Henceforth we will find a 

relation similar to that one presented in Eq. (18): 
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with w



 . This system is obviously a Hamiltonian one. Thus, we can identify 

the factors of w as the phase space coordinates. Eq. (30) specifies the fact that w 

is a dissipation coefficient, more precisely a mass variation rate for the variable 

mass case. It is important to find the most general solution of this equation. 

Cariñena and Ramos (Cariñena and Ramos, 2000) presented a modern approach 

to integrate a Riccati equation. Let’s consider the next complex numbers: 
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The roots of the quadratic polynomial from the left hand side of Eq. (30) 

are two constant solution of the equation. Being constant, their derivatives are 

null, thus the polynomial is also null. In order to avoid this, we first perform the 

homograph transformation: 
 

0

0
*

w w
z

w w





.                                                   (33) 



Bul. Inst. Polit. Iaşi, Vol. 63 (67), Nr. 2, 2017                                     31 

 

In these conditions, it results z is a solution of the linear and 

homogeneous first order equation: 
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Hence, if we express the initial condition z(0) in a right manner, we can 

obtain the general solution of Eq. (30) by applying an inverse transformation to 

Eq. (33). We find 
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where r and tr are two real constants characterizing the solution. Using relations 

(32), we can put the same solution in real terms: 
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This relationship shows a frequency modulation through a Stoler 

transformation (Stoler, 1970) which leads to the complex representation of this 

parameter. 

Fig. 2 shows the dimensionless discharge current oscillations, obtained 

from the solution (36) for different scale resolutions of the frequency, r being 

kept constant at the value 0.1. We observe that for small scale resolutions the 

current is described by a simple oscillatory regime, while as the frequency scale 

resolution increases we notice the appearance of some patterns. The patterns 

become denser and foreshadow the presence of modulation of the oscillating 

frequency. 

From Fig. 2 we can extract time series of the discharge current 

oscillations for different value of , which are shown in Fig. 3. We notice that 

these signals are similar to that experimentally recorded. 

Fig. 4 shows the time series of the discharge current oscillations for 

different values of r and for two values of the oscillations frequency, . The 

damping of the oscillatory state describes the losses through dissipative or 

dispersive mechanisms. In Fig. 4 competing oscillatory behaviors described by 

two oscillations frequencies, with comparable amplitudes, can be identified. As 

the damping increases, the ratio between the two oscillation frequencies 

changes, the system ending in an oscillatory state on a single frequency. These 

results are also in good agreement with the experimental ones. 
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Fig. 2 – Dimensionless discharge current obtained from the theoretical model, for 

different scale resolutions of the oscillations frequency (3D maps on the left column and 

the contour plots on the right column, respectively). 
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Fig. 3 – Time series of the discharge current obtained from the theoretical  

model, for different value of . 
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Fig. 4 – Time series of the discharge current obtained from the theoretical model,  

for different value of r and two values of . 

 
3. Conclusions 

 

By assuming that the discharge plasma particles moves on continuous 

but non-differentiable (fractal) curves, a theoretical model was developed in the 

frame of Scale Relativity Theory, able to explain the phenomenon of self-

modulation of the plasma system dynamics. The obtained results from the this 

theoretical model are in good agreement with the experimentally recorded ones. 
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AUTOMODULAREA DINAMICII UNEI PLASME DE 

 DESCĂRCARE CU CATOD CAVITAR 

 II. Modelare teoretică 

 

(Rezumat) 

 

Este propus un model teoretic, dezvoltat în cadrul Teoriei Relativității de Scală, 

capabil să explice automodularea dinamicii unei plasme de descărcare cu catod cavitar. În 

cadrul acestui model, complexitatea interacțiunilor din volumul de plasmă a fost înlocuită 

de nediferențiabilitate (fractalitate). Particulele din plasma de descărcare se mișcă liber, 

fără constrângeri, pe curbe continue dar nediferențiabile, într-un spațiu fractal. S-a obținut 

o ecuație de tip Riccati, ce descrie dinamica unui oscilator armonic. Soluția acestei ecuații 

prezintă o modulare a frecvenței prin intermediul unei transformări Stoler. Rezultatele 

obținute sunt în bună concordanță cu cele experimentale. 
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