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Abstract. We study the existence and multiplicity of positive solutions for 

a system of nonlinear Riemann-Liouville fractional differential equations with 

nonnegative and nonsingular nonlinearities, subject to multi-point boundary 

conditions which contain fractional derivatives. 
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1. Introduction  

 

Fractional differential equations describe many phenomena in several 

fields of engineering and scientific disciplines such as physics, biophysics, 

chemistry, biology (for example, the primary infection with HIV), economics, 

control theory, signal and image processing, thermoelasticity, aerodynamics, 

viscoelasticity, electromagnetics and rheology  (Arafa et al., 2012; Baleanu et 

al., 2012; Cole, 1993; Das, 2008; Ding and Ye, 2009; Djordjevic et al., 2003; 

Ge and Ou, 2008; Kilbas et al., 2006; Klafter et al., 2011; Metzler and Klafter, 

2000; Ostoja-Starzewski, 2007; Podlubny, 1999; Povstenko, 2015; Sabatier et 

al., 2007; Samko et al., 1993; Sokolov et al., 2002). Fractional differential 
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equations are also regarded as a better tool for the description of hereditary 

properties of various materials and processes than the corresponding integer 

order differential equations. 

We consider the system of nonlinear ordinary fractional differential 

equations 

 𝑆                          
𝐷0+

𝛼 𝑢 𝑡 + 𝑓 𝑡, 𝑢 𝑡 , 𝑣 𝑡  = 0,    𝑡 ∈  0,1 ,

𝐷0+
𝛽
𝑣 𝑡 + 𝑔 𝑡, 𝑢 𝑡 , 𝑣 𝑡  = 0,    𝑡 ∈  0,1 ,

  

with the multi-point boundary conditions 

 𝐵𝐶   

 
 

 𝑢 𝑗   0 = 0,   𝑗 = 0,… , 𝑛 − 2;  𝐷0+
𝑝1𝑢 𝑡 |𝑡=1 =  𝑎𝑖𝐷0+

𝑞1𝑢 𝑡 |𝑡=𝜉𝑖

𝑁

𝑖=1
,

𝑣 𝑗   0 = 0,   𝑗 = 0,… ,𝑚 − 2;  𝐷0+
𝑝2𝑣 𝑡 |𝑡=1 =  𝑏𝑖𝐷0+

𝑞2𝑣 𝑡 |𝑡=𝜂 𝑖

𝑀

𝑖=1
,

  

where 𝛼, 𝛽 ∈ ℝ, 𝛼 ∈  𝑛 − 1, 𝑛 , 𝛽 ∈  𝑚 − 1,𝑚 , 𝑛,𝑚 ∈ ℕ, 𝑛,𝑚 ≥ 3, 𝑝1 , 𝑝2 ,  
𝑞1 , 𝑞2 ∈ ℝ, 𝑝1 ∈  1, 𝑛 − 2 , 𝑝2 ∈  1,𝑚 − 2 , 𝑞1 ∈  0, 𝑝1 , 𝑞2 ∈  0, 𝑝2 ,   𝜉𝑖 , 𝑎𝑖 ∈
ℝ  for all 𝑖 = 1,… ,𝑁  𝑁 ∈ ℕ ,  0 < 𝜉1 < ⋯ < 𝜉𝑁 ≤ 1, 𝜂𝑖 , 𝑏𝑖 ∈ ℝ  for all 

𝑖 = 1,… ,𝑀  𝑀 ∈ ℕ , 0 < 𝜂1 < ⋯ < 𝜂𝑀 ≤ 1,  and 𝐷0+
𝑘  denotes the Riemann-

Liouville derivative of order 𝑘 (for 𝑘 = 𝛼, 𝛽, 𝑝1 , 𝑝2 , 𝑞1, 𝑞2). 

             Under sufficient conditions on the nonnegative and nonsingular 

functions 𝑓and 𝑔, we study the existence and multiplicity of positive solutions 

of problem (S)-(BC). We use some theorems from the fixed point index theory 

(Amann, 1976; Zhou and Xu, 2006). By a positive solution of problem (S)-(BC) 

we mean a pair of functions (𝑢, 𝑣) ∈  𝐶( 0,1 , [0,∞) )2 satisfying (S) and (BC) 

with 𝑢 𝑡 > 0 for all 𝑡 ∈ (0,1] or 𝑣 𝑡 > 0 for all 𝑡 ∈ (0,1]. 
             The system (S) with some positive parameters, subject to the boundary 

conditions (BC) was investigated in (Henderson et al., 2017). The system (S) 

with 𝑓 𝑡, 𝑢, 𝑣 = 𝑓  𝑡, 𝑣 , 𝑔 𝑡, 𝑢, 𝑣 = 𝑔  𝑡, 𝑢  has been studied in (Henderson 

and Luca, 2017c). In this last paper, the authors use some different operators 

and different assumptions than those we use in this paper. The existence of 

positive solutions of the system (S) with the coupled multi-point boundary 

conditions 

  𝐵𝐶     
𝑢 𝑗   0 = 0,   𝑗 = 0,… , 𝑛 − 2;  𝐷0+

𝑝1𝑢 𝑡 |𝑡=1 =  𝑎𝑖𝐷0+
𝑞1𝑣 𝑡 |𝑡=𝜉𝑖

𝑁
𝑖=1 ,

𝑣 𝑗   0 = 0,   𝑗 = 0,… ,𝑚 − 2;  𝐷0+
𝑝2𝑣 𝑡 |𝑡=1 =  𝑏𝑖𝐷0+

𝑞2𝑢 𝑡 |𝑡=𝜂𝑖
𝑀
𝑖=1 ,

  

was studied in (Henderson and Luca, 2017b). For other papers which 

investigate the existence, nonexistence and multiplicity of positive solutions for 

systems of fractional differential equations with nonnegative or sign-changing 

nonlinearities, subject to various nonlocal boundary conditions we mention 

(Henderson and Luca, 2014a, b; Luca and Tudorache, 2014; Henderson and 

Luca, 2015; Henderson et al., 2015; Henderson and Luca, 2016a, b). 

The paper is organized as follows. In Section 2, we present some 

auxiliary results which investigate a nonlocal boundary value problem for 

fractional differential equations, and we give the properties of the Green 
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functions associated to our problem. Section 3 contains the existence and 

multiplicity results for the positive solutions of problem (S)-(BC).   

             

2. Auxiliary Results 

 

We present here some auxiliary results from (Henderson and Luca, 

2017a) that will be used to prove our main results. 

We consider the fractional differential equation 

                𝐷0+
𝛼 𝑢 𝑡 + 𝑥 𝑡 = 0,    0 < 𝑡 < 1,                                        (1) 

with the multi-point boundary conditions 

    𝑢 𝑗   0 = 0,   𝑗 = 0,… , 𝑛 − 2;  𝐷0+
𝑝1𝑢 𝑡 |𝑡=1 =  𝑎𝑖𝐷0+

𝑞1𝑢 𝑡 |𝑡=𝜉𝑖
𝑁
𝑖=1 ,         (2) 

where  𝛼 ∈  𝑛 − 1, 𝑛 , 𝑛 ∈ ℕ, 𝑛 ≥ 3, 𝑎𝑖, 𝜉𝑖 ∈ ℝ, i = 1,… ,𝑁  𝑁 ∈ ℕ ,  

0 < 𝜉1 < ⋯ < 𝜉𝑁 ≤ 1, 𝑝1 , 𝑞1 ∈ ℝ, 𝑝1 ∈  1, 𝑛 − 2 , 𝑞1 ∈  0, 𝑝1 , and  

𝑥 ∈ 𝐶 0,1 ∩ 𝐿1 0,1 . We denote by ∆1=
Γ(𝛼)

Γ(𝛼−𝑝1)
−

Γ(𝛼)

Γ(𝛼−𝑞1)
 𝑎𝑖𝜉𝑖

𝛼−𝑞1−1𝑁
𝑖=1 . 

 

Lemma 1. If 𝛥1 ≠ 0, then the function 𝑢 ∈ 𝐶[0,1] given by 

                                   𝑢 𝑡 =  𝐺1 𝑡, 𝑠 𝑥 𝑠 𝑑𝑠,   𝑡 ∈  0,1 ,
1

0
                                 (3) 

is solution of problem (1)-(2), where 

        𝐺1 𝑡, 𝑠 = 𝑔1 𝑡, 𝑠 +
𝑡𝛼−1

∆1
 𝑎𝑖𝑔2 𝜉𝑖 , 𝑠 ,   ∀ (𝑡, 𝑠) ∈𝑁
𝑖=1  0,1 ×  0,1 ,        (4) 

and 

        𝑔1 𝑡, 𝑠 =
1

Γ(𝛼)
 
𝑡𝛼−1 1 − 𝑠 𝛼−𝑝1−1 −  𝑡 − 𝑠 𝛼−1 ,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡𝛼−1 1 − 𝑠 𝛼−𝑝1−1 ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
          (5) 

𝑔2 𝑡, 𝑠 

=
1

Γ(𝛼 − 𝑞1)
 
𝑡𝛼−𝑞1−1 1 − 𝑠 𝛼−𝑝1−1 −  𝑡 − 𝑠 𝛼−𝑞1−1 ,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡𝛼−𝑞1−1 1 − 𝑠 𝛼−𝑝1−1,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1.
  

 

Lemma 2. The functions 𝑔1 and 𝑔2 given by (5) have the properties: 

a)   𝑔1(𝑡, 𝑠) ≤ 𝑕1(𝑠)  for all 𝑡, 𝑠 ∈  0,1 , where 

𝑕1 𝑠 =
1

Γ 𝛼 
 1 − 𝑠 𝛼−𝑝1−1 1 −  1 − 𝑠 𝑝1 , 𝑠 ∈  0,1 ; 

b) 𝑔1(𝑡, 𝑠) ≥ 𝑡𝛼−1𝑕1(𝑠)  for all 𝑡, 𝑠 ∈  0,1 ; 

c)  𝑔1 𝑡, 𝑠 ≤
𝑡𝛼−1

Γ 𝛼 
   for all 𝑡, 𝑠 ∈  0,1 ; 

d) 𝑔2(𝑡, 𝑠) ≥ 𝑡𝛼−𝑞1−1𝑕2(𝑠)  for all 𝑡, 𝑠 ∈  0,1 ,  where 

𝑕2 𝑠 =
1

Γ 𝛼 − 𝑞1 
 1 − 𝑠 𝛼−𝑝1−1 1 −  1 − 𝑠 𝑝1−𝑞1 , 𝑠 ∈  0,1 ; 

e) 𝑔2(𝑡, 𝑠) ≤
1

Γ(𝛼−𝑞1)
𝑡𝛼−𝑞1−1 for all 𝑡, 𝑠 ∈  0,1 ; 
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f) 𝑇𝑕𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑔1 and 𝑔2 are continuous on  0,1 ×  0,1 ; 𝑔1(𝑡, 𝑠) ≥ 0, 

𝑔2(𝑡, 𝑠) ≥ 0  for all 𝑡, 𝑠 ∈  0,1 ; 𝑔1 𝑡, 𝑠 > 0,  𝑔2 𝑡, 𝑠 > 0  for all 

𝑡, 𝑠 ∈  0,1 . 

Lemma 3. Assume that 𝑎𝑖 ≥ 0  for all 𝑖 = 1,… ,𝑁  and Δ1 > 0.  Then the 

function 𝐺1 given by (4) is a nonnegative continuous function on  0,1 ×  0,1  
and satisfies the inequalities:  

a) 𝐺1(𝑡, 𝑠) ≤ 𝐽1(𝑠)  for all 𝑡, 𝑠 ∈  0,1 , where  

              𝐽1 𝑠 = 𝑕1 𝑠 +
1

∆1
 𝑎𝑖𝑔2 𝜉𝑖 , 𝑠 ,𝑁
𝑖=1  𝑠 ∈  0,1 ; 

b) 𝐺1(𝑡, 𝑠) ≥ 𝑡𝛼−1𝐽1(𝑠)  for all 𝑡, 𝑠 ∈  0,1 ; 

c) 𝐺1(𝑡, 𝑠) ≤ 𝜎1𝑡
𝛼−1, for all 𝑡, 𝑠 ∈  0,1 ,  where 

                 𝜎1 =
1

Γ(𝛼)
+

1

Δ1Γ(𝛼−𝑞1)
 𝑎𝑖𝜉𝑖

𝛼−𝑞1−1𝑁
𝑖=1 . 

Lemma 4. Assume that 𝑎𝑖 ≥ 0  for all 𝑖 = 1,… ,𝑁,  Δ1 > 0,  𝑥 ∈ 𝐶(0,1) ∩
𝐿1(0,1) and 𝑥(𝑡) ≥ 0  for all 𝑡 ∈  0,1 . Then the solution u of problem (1)-(2) 

given by (3) satisfies the inequlity 𝑢(𝑡) ≥ 𝑡𝛼−1𝑢(𝑡′) for all 𝑡, 𝑡′ ∈  0,1 . 
 

We can also formulate similar results as Lemmas 1-4 for the fractional 

boundary value problem 

          𝐷0+
𝛽
𝑣 𝑡 + 𝑦 𝑡 = 0,    0 < 𝑡 < 1,                                              (6) 

    𝑣 𝑗   0 = 0,   𝑗 = 0,… ,𝑚 − 2;  𝐷0+
𝑝2𝑣 𝑡 |𝑡=1 =  𝑏𝑖𝐷0+

𝑞2𝑣 𝑡 |𝑡=𝜂𝑖 ,
𝑀
𝑖=1         (7) 

where  𝛽 ∈  𝑚 − 1,𝑚 ,𝑚 ∈ ℕ,𝑚 ≥ 3, 𝑏𝑖, 𝜂𝑖 ∈ ℝ, i = 1,… ,𝑀  𝑀 ∈ ℕ ,           

 0 < 𝜂1 < ⋯ < 𝜂𝑀 ≤ 1, 𝑝2 , 𝑞2 ∈ ℝ, 𝑝2 ∈  1,𝑚 − 2 , 𝑞2 ∈  0, 𝑝2  
 and  𝑦 ∈ 𝐶 0,1 ∩ 𝐿1 0,1 . 

We denote by Δ2 , 𝑔3 , 𝑔4 , 𝐺2 , 𝑕3 , 𝑕4 , 𝐽2  and  𝜎2  the corresponding 

constants and functions for problem (6)-(7) defined in a similar manner as 

Δ1 , 𝑔1 , 𝑔2 , 𝐺1 ,   𝑕1, 𝑕2 , 𝐽1 and  𝜎1, respectively. More precisely, we have  
 

          ∆2=
Γ(𝛽)

Γ(𝛽−𝑝2)
−

Γ(𝛽)

Γ(𝛽−𝑞2)
 𝑏𝑖𝜂𝑖

𝛽−𝑞2−1𝑀
𝑖=1 , 

𝑔3 𝑡, 𝑠 =
1

Γ(𝛽)
 
𝑡𝛽−1 1 − 𝑠 𝛽−𝑝2−1 −  𝑡 − 𝑠 𝛽−1 ,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡𝛽−1 1 − 𝑠 𝛽−𝑝2−1 ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
  

𝑔4 𝑡, 𝑠 

=
1

Γ(𝛽 − 𝑞2)
 
𝑡𝛽−𝑞2−1 1 − 𝑠 𝛽−𝑝2−1 −  𝑡 − 𝑠 𝛽−𝑞2−1,   0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡𝛽−𝑞2−1 1 − 𝑠 𝛽−𝑝2−1 ,   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
  

𝐺2 𝑡, 𝑠 = 𝑔3 𝑡, 𝑠 +
𝑡𝛽−1

∆2
 𝑏𝑖𝑔4 𝜂𝑖 , 𝑠 ,   ∀ (𝑡, 𝑠) ∈

𝑀

𝑖=1

 0,1 ×  0,1 , 

𝑕3 𝑠 =
1

Γ 𝛽 
 1 − 𝑠 𝛽−𝑝2−1 1 −  1 − 𝑠 𝑝2 , 𝑠 ∈  0,1 , 
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𝑕4 𝑠 =
1

Γ 𝛽 − 𝑞2 
 1 − 𝑠 𝛽−𝑝2−1 1 −  1 − 𝑠 𝑝2−𝑞2 , 𝑠 ∈  0,1 , 

𝐽2 𝑠 = 𝑕3 𝑠 +
1

∆2
 𝑏𝑖𝑔4 𝜂𝑖 , 𝑠 ,   𝑠 ∈  0,1 ,

𝑀

𝑖=1
 

𝜎2 =
1

Γ(𝛽)
+

1

Δ2Γ(𝛽 − 𝑞2)
 𝑏𝑖𝜂𝑖

𝛽−𝑞2−1
𝑀

𝑖=1
. 

 

The inequalities from Lemmas 3 and 4 for the functions 𝐺2 and 𝑣 are 

the following 𝐺2(𝑡, 𝑠) ≤ 𝐽2(𝑠),  𝐺2(𝑡, 𝑠) ≥ 𝑡𝛽−1𝐽2(𝑠) , 𝐺2(𝑡, 𝑠) ≤ 𝜎2𝑡
𝛽−1 , for 

all  𝑡, 𝑠 ∈  0,1 ,  and 𝑣(𝑡) ≥ 𝑡𝛽−1𝑣(𝑡 ′) for all 𝑡, 𝑡 ′ ∈  0,1 . 
 

Remark 1. Under the assumptions of Lemma 4, and of the corresponding 

lemma for problem (6)-(7), for 𝑐 ∈  0,1 , the solutions u, v of problems (1)-(2) 

and (6)-(7), respectively, satisfy the inequalities  
 

                      𝑚𝑖𝑛𝑡∈[𝑐,1] 𝑢(𝑡) ≥ 𝑐𝛼−1 𝑚𝑎𝑥𝑡 ′∈[0,1] 𝑢 𝑡
′ ,  

                      𝑚𝑖𝑛𝑡∈[𝑐,1] 𝑣(𝑡) ≥ 𝑐𝛽−1 𝑚𝑎𝑥𝑡 ′∈[0,1] 𝑣(𝑡 ′). 
 

The proofs of our results are based on the following fixed point index 

theorems. Let E be a real Banach space, 𝑃 ⊂ 𝐸 a cone, “≤” the partial ordering 

defined by P and 𝜃 the zero element in E. For 𝜚 > 0, let 𝐵𝜚={𝑢 ∈ 𝐸,  𝑢 < 𝜚} 

be the open ball of radius 𝜚  centered at 𝜃 , and its boundary 𝜕𝐵𝜚 =

 𝑢 ∈ 𝐸,  𝑢 = 𝜚 . 
 

Theorem 1.  (Amann, 1976) Let 𝐴:𝐵 𝜚⋂𝑃 → 𝑃  be a completely continuous 

operator which has no fixed point on 𝜕𝐵𝜚⋂𝑃.  If  𝐴𝑢 ≤  𝑢  for all 𝑢 ∈

𝜕𝐵𝜚⋂𝑃, then 𝑖 𝐴, 𝐵𝜚⋂𝑃, 𝑃 = 1.  
 

Theorem 2.  (Amann, 1976) Let 𝐴:𝐵 𝜚⋂𝑃 → 𝑃  be a completely continuous 

operator. If there exists 𝑢0 ∈ 𝑃 ∖ { 𝜃} such that 𝑢 − 𝐴𝑢 ≠ 𝜆𝑢0, for all 𝜆 ≥ 0 and  

𝑢 ∈ 𝜕𝐵𝜚⋂𝑃, then  𝑖 𝐴, 𝐵𝜚⋂𝑃, 𝑃 = 0.  
 

Theorem 3.  (Zhou and Xu, 2006) Let 𝐴:𝐵 𝜚⋂𝑃 → 𝑃  be a completely 

continuous operator which has no fixed point on 𝜕𝐵𝜚⋂𝑃. If there exists a linear 

operator 𝐿: 𝑃 → 𝑃 and 𝑢0 ∈ 𝑃 ∖ { 𝜃} such that 

                  𝑖)  𝑢0 ≤ 𝐿𝑢0 ,     𝑖𝑖)  𝐿𝑢 ≤ 𝐴𝑢, ∀ 𝑢 ∈ 𝜕𝐵𝜚⋂𝑃, 

then  𝑖 𝐴, 𝐵𝜚⋂𝑃, 𝑃 = 0. 
 

3. Main Results 
 

In this section we investigate the existence and multiplicity of positive 

solutions for problem (S)-(BC) under various assumptions on the functions f 

and g.  
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We present the assumptions that we shall use in the sequel. 
 

(H1) 𝛼, 𝛽 ∈ ℝ, 𝛼 ∈  𝑛 − 1, 𝑛 , 𝛽 ∈  𝑚 − 1,𝑚 , 𝑛,𝑚 ∈ ℕ, 𝑛,𝑚 ≥ 3,
𝑝1 , 𝑝2 , 𝑞1 , 𝑞2 ∈ ℝ, 𝑝1 ∈  1, 𝑛 − 2 , 𝑝2 ∈  1,𝑚 − 2 , 𝑞1 ∈  0, 𝑝1 , 𝑞2 ∈  0, 𝑝2 ,  

𝜉𝑖 ∈ ℝ, 𝑎𝑖 ≥ 0  for all 𝑖 = 1,… ,𝑁  𝑁 ∈ ℕ ,  0 < 𝜉1 < ⋯ < 𝜉𝑁 ≤ 1, 𝜂𝑖 ∈ ℝ,

𝑏𝑖 ≥ 0  for all 𝑖 = 1,… ,𝑀  𝑀 ∈ ℕ , 0 < 𝜂1 < ⋯ < 𝜂𝑀 ≤ 1,  ∆1=
𝛤(𝛼)

𝛤(𝛼−𝑝1)
−

𝛤(𝛼)

𝛤(𝛼−𝑞1)
 𝑎𝑖𝜉𝑖

𝛼−𝑞1−1𝑁
𝑖=1 > 0,  ∆2=

𝛤(𝛽)

𝛤(𝛽−𝑝2)
−

𝛤(𝛽)

𝛤(𝛽−𝑞2)
 𝑏𝑖𝜂𝑖

𝛽−𝑞2−1𝑀
𝑖=1 > 0. 

(H2) The functions 𝑓, 𝑔:  0,1 ×  0,∞ ×  0,∞ → [0,∞)  are 

continuous. 
 

By using Lemma 2, a solution of the following nonlinear system of 

integral equations 
 

 
 
 

 
 𝑢 𝑡 =  𝐺1 𝑡, 𝑠 𝑓 𝑠, 𝑢 𝑠 , 𝑣 𝑠   𝑑𝑠,   𝑡 ∈  0,1 ,

1

0

𝑣 𝑡 =  𝐺2 𝑡, 𝑠 𝑔 𝑠, 𝑢 𝑠 , 𝑣 𝑠   𝑑𝑠,   𝑡 ∈  0,1 
1

0

  

 

is solution of problem (S)-(BC). 

           We consider the Banach space 𝑋 = 𝐶[0,1] with supremum norm  ∙  and 

the Banach space 𝑌 = 𝑋 × 𝑋 with the norm  (𝑢, 𝑣) 𝑌 =  𝑢 +  𝑣 . We define 

the cone 𝑃 ⊂ 𝑌 by 𝑃 = {(𝑢, 𝑣) ∈ 𝑌, 𝑢(𝑡) ≥ 0, 𝑣(𝑡) ≥ 0 for all 𝑡 ∈  0,1 }. 
            We introduce the operators 𝑄1 , 𝑄2: 𝑌 → 𝑋 and 𝑄: 𝑌 → 𝑌 defined by 

                  𝑄1 𝑢, 𝑣  𝑡 =  𝐺1 𝑡, 𝑠 𝑓 𝑠, 𝑢 𝑠 , 𝑣 𝑠   𝑑𝑠,   𝑡 ∈  0,1 ,
1

0
 

                  𝑄2 𝑢, 𝑣  𝑡 =  𝐺2 𝑡, 𝑠 𝑔 𝑠, 𝑢 𝑠 , 𝑣 𝑠   𝑑𝑠,   𝑡 ∈  0,1 ,
1

0
 

and 𝑄 𝑢, 𝑣 = ( 𝑄1 𝑢, 𝑣 , 𝑄2 𝑢, 𝑣 ),  𝑢, 𝑣 ∈ 𝑌. 
            Under the assumptions (H1) and (H2), it is easy to see that operator 

𝑄:𝑃 → 𝑃 is completely continuous. It is obvious that if (u,v) is a fixed point of 

operator Q, then (u,v) is a solution of problem (S)-(BC). Therefore, we will 

study the existence and multiplicity of fixed points of operator Q.  
 

Theorem 4.  Assume that (H1) and (H2) hold. If the functions f and g also 

satisfy the conditions 

(H3) There exist 𝑝 ≥ 1 and 𝑞 ≥ 1 such that 

                       𝑓0
𝑠 = lim𝑢+𝑣→0

𝑢 ,𝑣≥0
𝑠𝑢𝑝 𝑡∈[0,1]

𝑓(𝑡,𝑢,𝑣)

(𝑢+𝑣)𝑝
= 0      and  

                          𝑔0
𝑠 = lim𝑢+𝑣→0

𝑢 ,𝑣≥0
𝑠𝑢𝑝𝑡∈[0,1]

𝑔(𝑡,𝑢,𝑣)

(𝑢+𝑣)𝑞
= 0;   

(H4) There exists 𝑐 ∈ (0,1) such that 

                          𝑓∞
𝑖 = lim𝑢+𝑣→∞

𝑢 ,𝑣≥0
𝑖𝑛𝑓𝑡∈[𝑐,1]

𝑓(𝑡,𝑢,𝑣)

𝑢+𝑣
= ∞      𝑎𝑛𝑑 

                          𝑔∞
𝑖 = lim𝑢+𝑣→∞

𝑢 ,𝑣≥0
𝑖𝑛𝑓𝑡∈[𝑐,1]

𝑔(𝑡,𝑢,𝑣)

𝑢+𝑣
= ∞, 

then problem (S)-(BC) has at least one positive solution  𝑢 𝑡 , 𝑣 𝑡  , 𝑡 ∈  0,1 .  
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Proof.  For c given in (H4) we define the cone 

𝑃0 =   𝑢, 𝑣 ∈ 𝑃, min
𝑡∈ 𝑐,1 

𝑢 𝑡 ≥ 𝑐𝛼−1 𝑢 , min
𝑡∈ 𝑐,1 

𝑣 𝑡 ≥ 𝑐𝛽−1 𝑣  .   

From our assumptions and Remark 1, for any  𝑢, 𝑣 ∈ 𝑃,  we deduce that 

𝑄 𝑢, 𝑣 = ( 𝑄1 𝑢, 𝑣 , 𝑄2 𝑢, 𝑣 ) ∈ 𝑃0 , that is 𝑄 𝑃 ⊂ 𝑃0 . 
We consider the functions 𝑢0 , 𝑣0: [0,1]  → ℝ defined by 

 𝑢0(𝑡) =  𝐺1 𝑡, 𝑠 𝑑𝑠,     𝑣0(𝑡) =  𝐺2 𝑡, 𝑠 𝑑𝑠,     𝑡 ∈  0,1 ,
1

0

1

0
 

that is (𝑢0 , 𝑣0) is solution of problem (1)-(2) with 𝑥 𝑡 = 𝑥0 𝑡 , 𝑦 𝑡 = 𝑦0 𝑡 ,  
𝑥0 𝑡 = 1, 𝑦0 𝑡 = 1 for all 𝑡 ∈  0,1 .  Hence (𝑢0 , 𝑣0) = 𝑄(𝑥0 , 𝑦0) ∈ 𝑃0. 

           We define the set 

𝑀 =   𝑢, 𝑣 ∈ 𝑃,
𝑡𝑕𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝜆 ≥ 0  𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡  𝑢, 𝑣 = 𝑄 𝑢, 𝑣 + 𝜆 𝑢0 , 𝑣0  . 

We will show that 𝑀 ⊂ 𝑃0 and  𝑀  is a bounded set of Y. If  𝑢, 𝑣 ∈  𝑀 , 
then there exists 𝜆 ≥ 0  such that  𝑢, 𝑣 =  𝑄 𝑢, 𝑣 + 𝜆 𝑢0 , 𝑣0  or equivalently 

                  
𝑢 𝑡 =  𝐺1 𝑡, 𝑠  𝑓 𝑠, 𝑢 𝑠 , 𝑣 𝑠  +  𝜆  𝑑𝑠,   𝑡 ∈  0,1 ,

1

0

𝑣 𝑡 =  𝐺2 𝑡, 𝑠  𝑔 𝑠, 𝑢 𝑠 , 𝑣 𝑠  +  𝜆  𝑑𝑠,   𝑡 ∈  0,1 .
1

0

   

By Remark 1, we obtain  𝑢, 𝑣 ∈  𝑃0 , so 𝑀 ⊂ 𝑃0 , and 

   𝑢 ≤
1

𝑐𝛼−1  min𝑡∈ 𝑐,1 𝑢 𝑡 ,     𝑣 ≤
1

𝑐𝛽−1  min𝑡∈ 𝑐,1 𝑣 𝑡 ,   ∀  𝑢, 𝑣 ∈ 𝑀 .   (8) 

From (H4) we have  𝑓∞
𝑖 = ∞ and  𝑔∞

𝑖 = ∞. Then for  𝜖1 =
2

𝑐𝛼−1𝑚1
> 0,  

𝜖2 =
2

𝑐𝛽−1𝑚2
> 0, there exist 𝐶1 > 0,  𝐶2 > 0 such that 

              𝑓 𝑡, 𝑢, 𝑣 ≥  𝜖1 𝑢 + 𝑣 − 𝐶1 ,    𝑔 𝑡, 𝑢, 𝑣 ≥  𝜖2 𝑢 + 𝑣 − 𝐶2,           (9) 

                             ∀  𝑡, 𝑢, 𝑣 ∈  𝑐, 1 ×  0,∞ ×  0,∞ , 

where 𝑚𝑖 =  𝐽𝑖 𝑠 𝑑𝑠
1

𝑐
 and  𝐽𝑖 , 𝑖 = 1,2 are defined in Lemma 3. 

For (𝑢, 𝑣) ∈  𝑀  and 𝑡 ∈ [𝑐, 1], by using Lemma 3 and relations (9), we 

obtain 

      𝑢 𝑡 = 𝑄1 𝑢, 𝑣  𝑡 + 𝜆𝑢0 𝑡 ≥ 𝑄1 𝑢, 𝑣  𝑡  

      =  𝐺1 𝑡, 𝑠 𝑓 𝑠, 𝑢 𝑠 , 𝑣 𝑠  𝑑𝑠
1

0
≥  𝑡𝛼−1𝐽1 𝑠 𝑓 𝑠, 𝑢 𝑠 , 𝑣 𝑠  𝑑𝑠

1

𝑐
 

      ≥ 𝑐𝛼−1  𝐽1 𝑠 [
1

𝑐
𝜖1 𝑢 𝑠 + 𝑣 𝑠  − 𝐶1] 𝑑𝑠 

      ≥ 𝑐𝛼−1𝜖1  𝐽1 𝑠 𝑢 𝑠 𝑑𝑠 − 𝑐𝛼−1𝑚1𝐶1
1

𝑐
 

      ≥ 𝑐𝛼−1𝜖1𝑚1 min𝑠∈ 𝑐,1 𝑢 𝑠 − 𝑐𝛼−1𝑚1𝐶1 

      ≥ 2 min𝑠∈ 𝑐,1 𝑢 𝑠 − 𝐶3 ,   𝐶3 =  𝑐𝛼−1𝑚1𝐶1, 
and 

     𝑣 𝑡 = 𝑄2 𝑢, 𝑣  𝑡 + 𝜆𝑣0 𝑡 ≥ 𝑄2 𝑢, 𝑣  𝑡  

      =  𝐺2 𝑡, 𝑠 𝑔 𝑠, 𝑢 𝑠 , 𝑣 𝑠  𝑑𝑠
1

0
≥  𝑡𝛽−1𝐽2 𝑠 𝑔 𝑠, 𝑢 𝑠 , 𝑣 𝑠  𝑑𝑠

1

𝑐
 

      ≥ 𝑐𝛽−1  𝐽2 𝑠 [
1

𝑐
𝜖2 𝑢 𝑠 + 𝑣 𝑠  − 𝐶2] 𝑑𝑠 

      ≥ 𝑐𝛽−1𝜖2  𝐽2 𝑠 𝑣 𝑠 𝑑𝑠 − 𝑐𝛽−1𝑚2𝐶2
1

𝑐
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      ≥ 𝑐𝛽−1𝜖2𝑚2 min𝑠∈ 𝑐,1 𝑣 𝑠 − 𝑐𝛽−1𝑚2𝐶2 

      ≥ 2 min𝑠∈ 𝑐,1 𝑣 𝑠 − 𝐶4,   𝐶4 =  𝑐𝛽−1𝑚2𝐶2. 
Therefore, we deduce 

              min𝑡∈ 𝑐,1 𝑢 𝑡 ≤ 𝐶3 ,    min𝑡∈ 𝑐,1 𝑣 𝑡 ≤ 𝐶4 ,   ∀  𝑢, 𝑣 ∈  𝑀 .           (10) 

Now from relations (8) and (10), we obtain 

 𝑢 ≤
𝐶3

𝑐𝛼−1
,      𝑣 ≤

𝐶4

𝑐𝛽−1
,        

                                  (𝑢, 𝑣) 𝑌 =  𝑢 +  𝑣 ≤
𝐶3

𝑐𝛼−1 +  
𝐶4

𝑐𝛽−1 = 𝐶5 , 

for all   𝑢, 𝑣 ∈  𝑀 ,  that is 𝑀  is a bounded set of Y. 

Besides, there exists a sufficiently large 𝑅1 > 1 such that 

         𝑢, 𝑣 ≠ 𝑄 𝑢, 𝑣 + 𝜆 𝑢0 , 𝑣0 ,   ∀  𝑢, 𝑣 ∈ 𝜕𝐵𝑅1
∩ 𝑃,    ∀  𝜆 ≥ 0. 

From (Amann, 1976), we deduce that the fixed point index of operator 

Q over 𝐵𝑅1
∩ 𝑃 with respect to P is  

                                     𝑖 𝑄, 𝐵𝑅1
⋂𝑃, 𝑃 = 0.                                                   (11) 

Next, from assumption (H3), we conclude that for  𝜖3 =
1

4𝑀1
> 0 and 

 𝜖4 =
1

4𝑀2
> 0, there exists 𝑟1 ∈ (0,1] such that 

                  𝑓 𝑡, 𝑢, 𝑣 ≤   𝜖3 𝑢 + 𝑣 𝑝 ,   𝑔 𝑡, 𝑢, 𝑣 ≤   𝜖4 𝑢 + 𝑣 𝑞 ,                  (12) 

                                ∀ 𝑡 ∈  0,1 ,   𝑢, 𝑣 ≥ 0, 𝑢 + 𝑣 ≤ 𝑟1,    

 where 𝑀𝑖 =  𝐽𝑖 𝑠 𝑑𝑠,   𝑖 = 1,2.
1

0
  

 By using (12), we deduce that for all  𝑢, 𝑣 ∈ 𝐵 𝑟1
∩ 𝑃 and 𝑡 ∈  0,1  

                       𝑄1 𝑢, 𝑣 (𝑡) ≤  𝐽1 𝑠  𝜖3 𝑢 𝑠 + 𝑣 𝑠  
𝑝
𝑑𝑠

1

0
   

≤  𝜖3𝑀1 (𝑢, 𝑣) 𝑌
𝑝
≤

1

4
 (𝑢, 𝑣) 𝑌 , 

                       𝑄2 𝑢, 𝑣 (𝑡) ≤  𝐽2 𝑠  𝜖4 𝑢 𝑠 + 𝑣 𝑠  
𝑞
𝑑𝑠

1

0
  

≤  𝜖4𝑀2 (𝑢, 𝑣) 𝑌
𝑞 ≤

1

4
 (𝑢, 𝑣) 𝑌 . 

These imply that 

           𝑄1(𝑢, 𝑣) ≤
1

4
 (𝑢, 𝑣) 𝑌 ,          𝑄2(𝑢, 𝑣) ≤

1

4
 (𝑢, 𝑣) 𝑌 , 

    𝑄(𝑢, 𝑣) 𝑌 =  𝑄1(𝑢, 𝑣) +  𝑄2(𝑢, 𝑣) ≤
1

2
 (𝑢, 𝑣) 𝑌 , ∀ (𝑢, 𝑣) ∈ 𝜕𝐵𝑟1

∩ 𝑃. 

From (Amann, 1976), we conclude that the fixed point index of 

operator Q over 𝐵𝑟1
∩ 𝑃 with respect to P is  

                                     𝑖 𝑄, 𝐵𝑟1
⋂𝑃, 𝑃 = 1.                                                    (13) 

Combining (11) and (13) we obtain 

       𝑖 𝑄,  𝐵𝑅1
∖ 𝐵 𝑟1

 ∩ 𝑃, 𝑃 = 𝑖 𝑄, 𝐵𝑅1
⋂𝑃, 𝑃 − 𝑖 𝑄, 𝐵𝑟1

⋂𝑃, 𝑃  = −1. 

We deduce that Q has at least one fixed point  𝑢, 𝑣 ∈  𝐵𝑅1
∖ 𝐵 𝑟1

 ∩ 𝑃, 
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that is 𝑟1 <  (𝑢, 𝑣) 𝑌 < 𝑅1 or 𝑟1 <  𝑢 +  𝑣 < 𝑅1 . By Lemma 4, we obtain 

that 𝑢 𝑡 > 0  for all 𝑡 ∈  0,1  or 𝑣 𝑡 > 0  for all 𝑡 ∈  0,1 . The proof is 

completed.                                                                                                            ∎ 
 

Theorem 5.  Assume that (H1) and (H2) hold. If the functions f and g also 

satisfy the conditions 

(H5)               𝑓∞
𝑠 = lim𝑢+𝑣→∞

𝑢 ,𝑣≥0
𝑠𝑢𝑝 𝑡∈[0,1]

𝑓(𝑡,𝑢,𝑣)

𝑢+𝑣
= 0       and 

                       𝑔∞
𝑠 = lim𝑢+𝑣→∞

𝑢 ,𝑣≥0
𝑠𝑢𝑝𝑡∈[0,1]

𝑔(𝑡,𝑢,𝑣)

𝑢+𝑣
= 0; 

 (H6) There exist 𝑐 ∈  0,1 , 𝑝 ∈ (0,1] and 𝑞 ∈ (0,1] such that 

                       𝑓0
𝑖 = lim𝑢+𝑣→0

𝑢 ,𝑣≥0
𝑖𝑛𝑓𝑡∈[𝑐,1]

𝑓(𝑡,𝑢,𝑣)

(𝑢+𝑣)𝑝 
= ∞      and   

                       𝑔0
𝑖 = lim𝑢+𝑣→0

𝑢 ,𝑣≥0
𝑖𝑛𝑓𝑡∈[𝑐,1]

𝑔(𝑡,𝑢,𝑣)

(𝑢+𝑣)𝑞 
= ∞, 

then problem (S)-(BC) has at least one positive solution  𝑢 𝑡 , 𝑣 𝑡  , 𝑡 ∈  0,1 .  
 

Proof.  From the assumption (H5), we deduce that for  𝜖5 =
1

4𝑀1
> 0  and 

 𝜖6 =
1

4𝑀2
> 0,  there exist  𝐶6 > 0,  𝐶7 > 0 such that 

             𝑓 𝑡, 𝑢, 𝑣 ≤  𝜖5 𝑢 + 𝑣 + 𝐶6 ,     𝑔 𝑡, 𝑢, 𝑣 ≤  𝜖6 𝑢 + 𝑣 + 𝐶7 ,         (14) 

                              ∀  𝑡, 𝑢, 𝑣 ∈  0,1 ×  0,∞ ×  0,∞ . 
          Hence for (𝑢, 𝑣) ∈ 𝑃, by using (14), we obtain 

      𝑄1 𝑢, 𝑣 (𝑡) ≤  𝐽1 𝑠  𝜖5 𝑢 𝑠 + 𝑣 𝑠  + 𝐶6 𝑑𝑠
1

0
 

      ≤ 𝜖5  𝑢 +  𝑣   𝐽1 𝑠 𝑑𝑠
1

0
+ 𝐶6  𝐽1 𝑠 𝑑𝑠

1

0
 

      = 𝜖5 (𝑢, 𝑣) 𝑌𝑀1+𝐶6𝑀1 =
1

4
 (𝑢, 𝑣) 𝑌 + 𝐶6𝑀1 ,    ∀ 𝑡 ∈  0,1 , 

       𝑄2 𝑢, 𝑣 (𝑡) ≤  𝐽2 𝑠  𝜖6 𝑢 𝑠 + 𝑣 𝑠  + 𝐶7 𝑑𝑠
1

0
 

      ≤ 𝜖6  𝑢 +  𝑣   𝐽2 𝑠 𝑑𝑠
1

0
+ 𝐶7  𝐽2 𝑠 𝑑𝑠

1

0
 

      = 𝜖6 (𝑢, 𝑣) 𝑌𝑀2+𝐶7𝑀2 =
1

4
 (𝑢, 𝑣) 𝑌 + 𝐶7𝑀2,    ∀ 𝑡 ∈  0,1 , 

and so 

         𝑄(𝑢, 𝑣) 𝑌 =  𝑄1(𝑢, 𝑣) +  𝑄2(𝑢, 𝑣) ≤
1

2
 (𝑢, 𝑣) 𝑌 + (𝐶6𝑀1 + 𝐶7𝑀2) 

         =
1

2
 (𝑢, 𝑣) 𝑌 + 𝐶8,    𝐶8 = 𝐶6𝑀1 + 𝐶7𝑀2.   

        Then there exists a sufficiently large 𝑅2 ≥ max{4𝐶8 , 1} such that 

          𝑄(𝑢, 𝑣) 𝑌 ≤
3

4
 (𝑢, 𝑣) 𝑌 ,     ∀  𝑢, 𝑣 ∈ 𝑃,  (𝑢, 𝑣) 𝑌 ≥ 𝑅2 .  

Hence   𝑄(𝑢, 𝑣) 𝑌 <  (𝑢, 𝑣) 𝑌  for all (𝑢, 𝑣) ∈ 𝜕𝐵𝑅2
∩ 𝑃  and from 

(Amann, 1976) we have 

                                     𝑖 𝑄, 𝐵𝑅2
⋂𝑃, 𝑃 = 1.                                                   (15) 

On the other hand, from (H6) we deduce that for  𝜖7 =
1

𝑐𝛼−1𝑚1
> 0,  

𝜖8 =
1

𝑐𝛽−1𝑚2
> 0, there exists 𝑟2 ∈ (0,1) such that 
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                𝑓 𝑡, 𝑢, 𝑣 ≥   𝜖7 𝑢 + 𝑣 𝑝 ,   𝑔 𝑡, 𝑢, 𝑣 ≥   𝜖8 𝑢 + 𝑣 𝑞 ,                    (16) 

                                  ∀ 𝑡 ∈  𝑐, 1 ,   𝑢, 𝑣 ≥ 0, 𝑢 + 𝑣 ≤ 𝑟2 .   
     From (16), we deduce that for any  𝑢, 𝑣 ∈ 𝐵 𝑟2

∩ 𝑃 

      𝑄1 𝑢, 𝑣  𝑡 ≥  𝐺1 𝑡, 𝑠 𝑓 𝑠, 𝑢 𝑠 , 𝑣 𝑠  𝑑𝑠
1

𝑐
 

      ≥  𝜖7𝐺1 𝑡, 𝑠  𝑢(𝑠) + 𝑣(𝑠) 𝑝  𝑑𝑠
1

𝑐
  

      ≥ 𝜖7  𝐺1 𝑡, 𝑠  𝑢 𝑠 + 𝑣 𝑠   𝑑𝑠 =: 𝐿1 𝑢, 𝑣  𝑡 ,    ∀ 𝑡 ∈  0,1 ,
1

𝑐
 

      𝑄2 𝑢, 𝑣  𝑡 ≥  𝐺2 𝑡, 𝑠 𝑔 𝑠, 𝑢 𝑠 , 𝑣 𝑠  𝑑𝑠
1

𝑐
 

      ≥  𝜖8𝐺2 𝑡, 𝑠  𝑢(𝑠) + 𝑣(𝑠) 𝑞  𝑑𝑠
1

𝑐
  

      ≥ 𝜖8  𝐺2 𝑡, 𝑠  𝑢 𝑠 + 𝑣 𝑠   𝑑𝑠 =: 𝐿2 𝑢, 𝑣  𝑡 ,    ∀ 𝑡 ∈  0,1 .
1

𝑐
 

      Hence 

                       𝑄 𝑢, 𝑣 ≥ 𝐿 𝑢, 𝑣 ,    ∀  𝑢, 𝑣 ∈ 𝜕𝐵𝑟2
∩ 𝑃,                                (17) 

where the linear operator 𝐿: 𝑃 → 𝑃 is defined by 𝐿 𝑢, 𝑣 =  𝐿1 𝑢, 𝑣 , 𝐿2 𝑢, 𝑣  . 

       For  𝑢 0 , 𝑣 0 ∈ 𝑃 ∖ { 0,0 } defined by 

            𝑢 0 𝑡 =  𝐺1 𝑡, 𝑠 𝑑𝑠,    𝑣 0 𝑡 =  𝐺2 𝑡, 𝑠 𝑑𝑠,    
1

𝑐
∀ 𝑡 ∈  0,1 ,

1

𝑐
 

we have 𝐿 𝑢 0 , 𝑣 0 = (𝐿1 𝑢 0, 𝑣 0 , 𝐿2 𝑢 0, 𝑣 0 ) with 

     𝐿1 𝑢 0 , 𝑣 0  𝑡 = 𝜖7  𝐺1 𝑡, 𝑠 ( 𝐺1 𝑠, 𝜏  𝑑𝜏
1

𝑐
+

1

𝑐  𝐺2 𝑠, 𝜏  𝑑𝜏
1

𝑐
) 𝑑𝑠 

     ≥  𝜖7  𝐺1 𝑡, 𝑠   𝐺1 𝑠, 𝜏  𝑑𝜏
1

𝑐
 𝑑𝑠

1

𝑐
 

     ≥  𝜖7  𝐺1 𝑡, 𝑠   𝑐𝛼−1𝐽1 𝜏  𝑑𝜏
1

𝑐
 𝑑𝑠

1

𝑐
 

     = 𝜖7𝑐
𝛼−1𝑚1  𝐺1 𝑡, 𝑠 𝑑𝑠 

1

𝑐
=  𝐺1 𝑡, 𝑠 𝑑𝑠 

1

𝑐
= 𝑢 0 𝑡 , ∀ 𝑡 ∈  0,1 , 

    𝐿2 𝑢 0 , 𝑣 0  𝑡 = 𝜖8  𝐺2 𝑡, 𝑠 ( 𝐺1 𝑠, 𝜏  𝑑𝜏
1

𝑐
+

1

𝑐  𝐺2 𝑠, 𝜏  𝑑𝜏
1

𝑐
) 𝑑𝑠 

     ≥  𝜖8  𝐺2 𝑡, 𝑠   𝐺2 𝑠, 𝜏  𝑑𝜏
1

𝑐
 𝑑𝑠

1

𝑐
 

     ≥  𝜖8  𝐺2 𝑡, 𝑠   𝑐𝛽−1𝐽2 𝜏  𝑑𝜏
1

𝑐
 𝑑𝑠

1

𝑐
 

     = 𝜖8𝑐
𝛽−1𝑚2  𝐺2 𝑡, 𝑠 𝑑𝑠 

1

𝑐
=  𝐺2 𝑡, 𝑠 𝑑𝑠 

1

𝑐
= 𝑣 0 𝑡 , ∀ 𝑡 ∈  0,1 . 

  So 

                                   𝐿 𝑢 0 , 𝑣 0 ≥  𝑢 0 , 𝑣 0 .                                                     (18) 

We may suppose that Q has no fixed point on 𝜕𝐵𝑟2
∩ 𝑃 (otherwise the 

proof is finished). From (17), (18) and (Zhou and Xu, 2006, Lemma 3), we 

conclude that 

                                     𝑖 𝑄, 𝐵𝑟2
⋂𝑃, 𝑃 = 0.                                                   (19) 

Therefore, from (15) and (19), we have 

          𝑖 𝑄,  𝐵𝑅2
∖ 𝐵 𝑟2

 ∩ 𝑃, 𝑃 = 𝑖 𝑄, 𝐵𝑅2
⋂𝑃, 𝑃 − 𝑖 𝑄, 𝐵𝑟2

⋂𝑃, 𝑃  = 1. 

Then Q has at least one fixed point in  𝐵𝑅2
∖ 𝐵 𝑟2

 ∩ 𝑃,  that is 𝑟2 <

 (𝑢, 𝑣) 𝑌 < 𝑅2 .  Thus problem (S)-(BC) has at least one positive solution 

(𝑢, 𝑣) ∈ 𝑃. This completes the proof.                                                                  ∎ 
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Theorem 6.  Assume that (H1), (H2), (H4) and (H6) hold. If the functions f and 

g also satisfy the condition 

(H7) For each 𝑡 ∈  0,1 , f(t,u,v) and g(t,u,v) are nondecreasing with respect to 

u and v, and there exists a constant 𝑁0 > 0 such that 

              𝑓 𝑡, 𝑁0 , 𝑁0 <
𝑁0

2𝑚0
,    𝑔 𝑡, 𝑁0 , 𝑁0 <

𝑁0

2𝑚0
,    ∀ 𝑡 ∈  0,1 , 

where  𝑚0 = max{𝑀𝑖 , 𝑖 = 1,2}, (𝑀𝑖 =  𝐽𝑖 𝑠 𝑑𝑠
1

0
, 𝑖 = 1,2), 

then problem (S)-(BC) has at least two positive solutions  𝑢1 𝑡 , 𝑣1 𝑡  ,

 𝑢2 𝑡 , 𝑣2 𝑡  , 𝑡 ∈  0,1 .   

 

Proof. By using (H7), for any  𝑢, 𝑣 ∈ 𝜕𝐵𝑁0
∩ 𝑃, we obtain 

       𝑄1 𝑢, 𝑣 (𝑡) ≤  𝐺1 𝑡, 𝑠 𝑓 𝑠, 𝑁0 , 𝑁0 𝑑𝑠 ≤  𝐽1 𝑠 𝑓 𝑠, 𝑁0 , 𝑁0 𝑑𝑠
1

0

1

0
  

        <
𝑁0

2𝑚0
 𝐽1 𝑠 𝑑𝑠

1

0
=

𝑁0𝑀1

2𝑚0
≤

𝑁0

2
,   ∀𝑡 ∈  0,1 , 

      𝑄2 𝑢, 𝑣 (𝑡) ≤  𝐺2 𝑡, 𝑠 𝑔 𝑠, 𝑁0 , 𝑁0 𝑑𝑠 ≤  𝐽2 𝑠 𝑔 𝑠, 𝑁0 , 𝑁0 𝑑𝑠
1

0

1

0
  

        <
𝑁0

2𝑚0
 𝐽2 𝑠 𝑑𝑠

1

0
=

𝑁0𝑀2

2𝑚0
≤

𝑁0

2
,   ∀𝑡 ∈  0,1 . 

Then we deduce 

         𝑄(𝑢, 𝑣) 𝑌 =  𝑄1(𝑢, 𝑣) +  𝑄2(𝑢, 𝑣) < 𝑁0 ,    ∀  𝑢, 𝑣 ∈ 𝜕𝐵𝑁0
∩ 𝑃. 

 By (Amann, 1976) we conclude that 

                                     𝑖 𝑄, 𝐵𝑁0
⋂𝑃, 𝑃 = 1.                                                   (20) 

On the other hand, from (H4) and (H6) and the proofs of Theorem 4 and 

Theorem 5, we know that there exists a sufficiently large 𝑅1 > 𝑁0 and a 

sufficiently small 𝑟2 ∈ (0,𝑁0) such that 

                         𝑖 𝑄, 𝐵𝑅1
⋂𝑃, 𝑃 = 0,     𝑖 𝑄, 𝐵𝑟2

⋂𝑃, 𝑃 = 0,                           (21) 

From the relations (20) and (21), we obtain 

         𝑖 𝑄,  𝐵𝑅1
∖ 𝐵 𝑁0

 ∩ 𝑃, 𝑃 = 𝑖 𝑄, 𝐵𝑅1
⋂𝑃, 𝑃 − 𝑖 𝑄, 𝐵𝑁0

⋂𝑃, 𝑃  = −1, 

         𝑖 𝑄,  𝐵𝑁0
∖ 𝐵 𝑟2

 ∩ 𝑃, 𝑃 = 𝑖 𝑄, 𝐵𝑁0
⋂𝑃, 𝑃 − 𝑖 𝑄, 𝐵𝑟2

⋂𝑃, 𝑃  =1. 

Then Q has at least one fixed point  𝑢1 , 𝑣1 ∈  𝐵𝑅1
∖ 𝐵 𝑁0

 ∩ 𝑃 and has 

at least one fixed point  𝑢2 , 𝑣2 ∈  𝐵𝑁0
∖ 𝐵 𝑟2

 ∩ 𝑃.  If in Theorem 5, the 

operator Q has at least one fixed point on 𝜕𝐵𝑟2
∩ 𝑃, then by using the first 

relation from formula above, we deduce that Q has at least one fixed point 

 𝑢1 , 𝑣1 ∈  𝐵𝑅1
∖ 𝐵 𝑁0

 ∩ 𝑃 and has at least one fixed point  𝑢2 , 𝑣2 ∈ 𝜕𝐵𝑟2
∩

𝑃.  Therefore, problem (S)-(BC) has two distinct positive solutions  𝑢1, 𝑣1 ,

 𝑢2 , 𝑣2 . The proof is completed.                                                                        ∎ 
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EXISTENŢA SOLUŢIILOR POZITIVE PENTRU O 

 PROBLEMĂ LA LIMITĂ FRACŢIONARĂ  

 

(Rezumat) 

 

Studiem existenţa şi multiplicitatea soluţiilor pozitive pentru sistemul de 

ecuaţii diferenţiale fracţionare Riemann-Liouville (S) cu neliniarităţi nenegative şi 

nesingulare, cu condiţiile la limită (BC) cu mai multe puncte care conţin derivate 

fracţionare. 
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