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Abstract. In this article we present an introduction in the embedding 

theory, which is a mean to mathematically describe the very irregular physical 

processes occurring in complex systems, such as fluid turbulence or those 

processes occurred at the nanoscale. 
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1. Introduction 

 
The modeling in physics is based on differential models that use 

ordinary differential equations and/or partial differential equations. The use of 

these equations does not allow, however, the modeling of sufficiently irregular 

dynamic behavior. In most of the real physical problems, some of the 

phenomena escape from modeling, either because we do not know them (and 

nothing tells us that those that escape have to be modeled by differentiable 

patterns), or because we do not know how to model them (i.e. the variation of 

the sun's flattening over time, which should be taken into account in the 
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evolution studies of the solar system over long periods of time). Therefore, 

current physical patterns are regular traces of more complex dynamics, which 

are not directly accessible to us. 

The embedding theory of dynamical systems consists of trying to model 

more general dynamics from which, the regular dynamics described by partial 

differential equations, derive. 

 

2. Embedding Theory 

 

The strategy of embedding theory was first outlined in (Cresson, 

2003). In order to describe this strategy, a series of notions should be 

introduced. It is embedded a functional  ,L x dx dt , defined for x∊C
1
(ℝ) in 

C
0
(ℝ) and an operator D that satisfies the following constants: i) D is defined 

on C
0
(ℝ), ii) D d dt on C

1
(ℝ). 

Noting with P the extended functional L , after the embedding, to 

C
0
(ℝ) we have the following diagram: 

 

 

   ?

,

,

LAPL x dx dt EL

P P

L X DX P EL



 


 

               (1) 

 

where LAP is the least action principle, (EL) is the Euler-Lagrange classical 

equation associated with L and (?) is, for the time being, an unknown 

principle of the minimum action, which have to be defined case by case. The 

ignorance results from the lack of a correct definition of extreme notion and 

variation for the extended function. The extreme will have to be searched so 

as to make the diagram (1) switchable. The study of the existence of such an 

extreme is called the coherence theorem in embedding theory. The central 

point remains the extension of the classical derivative to a more general 

functional space. 

By this extension of the notion of derivative we can reach two distinct 

theories. 

In one case, the initial EL equation is present in the extended EL 

equation, P (EL). The new derivative is reduced to the classical derivative when 

returning to classical processes. For example, in the case of stochastic 

embedding, the new operator reduces to the classical derivative when returning 

to differentiable deterministic processes (Cresson and Darses, 2007). The 

terminology used in this case is even embedding theory. The scheme used in 

this case is the following: 

‒ we extend classical derivatives to a functional space F  and 

defines an application 0p C : F that associates each continuous 
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function (differentiable or not) with a functional which has the meaning of 

extended derivative. 

‒ we extend the ordinary differential equations or the partial differential 

equations using the functional as an extended derivative. 

Therefore, the original equation will recover from the extended equation 

by restricting the functional space to  kp C , k depending on the order of the 

original equation. The typical example in this case is fractional embedding 

(Cresson, 2007). 

In the second case, an additional parameter, h, is used, and the extended 

operator, Dh is reduced to the classical derivative only when. In this case, the 

original EL equation is not contained in the extended equation P (EL); however, 

we have a continuous deformation of the P (EL) equation, which depends on. In 

this case, the terminology of deformation theory is used. The scheme used in 

this case is the following: 

‒ we define a family of functional  F which depend of one or more 

parameters. For comprehension, consider a single parameter and therefore the 

functional family dependent on this parameter  
0

F
p

. 

‒ we define an operator 
0

D p in such a way as when  
0

1
F

p
C  we 

have  
0

D p x dx dt  for 
1x C . 

It is obvious that from a deformation we can hardly get information 

about the initial equation. Asymptotic solutions should be sought for 
0 0p  . 

An example of this is the scale calculation. In this case, it is desired to 

capture the type of regularity of the graph of a function (trajectories) starting 

from a family of approximations having the following behaviour: if 0  , 

then the approximation is a differentiable function, and if 0  , then we 

obtain the original, non-differentiable function. Here   is the scale resolution. 

In this approach, the notion of minimal resolution appears to be necessary, but 

its definition still requires discussions, and there is no intrinsic definition of 

this notion because this is about choosing a constant, which in practice, would 

preserve the role of precision, what has physical meaning, but not 

mathematical one. 

 
3. Conclusions 

 

Linear or nonlinear Schrodinger's equation can be obtained as a result of 

a principle of the minimal action formulated in one of two cases (embedding or 

deformation). These results suggest the following. 

i) Any natural equation with partial derivatives could be obtained as a 

result of a minimum action principle. As natural we understand partial 
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differential equations well known in physics, such as, for example, the Navier-

Stokes equations or Dirac equations. 

ii) If things are as above, this suggests a deeper relationship between 

embedding theories and partial-differential equations. More specifically, 

embedding approaches suggest that modelling using partial-differential 

equations would only consider the regular part of dynamical behaviours. In the 

same time, these equations cannot surprise in any way the turbulent solutions. 

The existence of so-called weak solutions or strong solutions means the 

existence of a supplementary structure which exists beyond the regular 

solutions, and which can only be surprised by the principles of minimal non-

differentiable action. 
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TEORIA “EMBEDDING” PENTRU SISTEME COMPLEXE 

 

(Rezumat) 

 

În acest articol prezentăm o introducere în teoria “embedding”-ului, care este o 

metodă de descriere matematică a proceselor fizice foarte neregulate în sisteme 

complexe, cum ar fi turbulențele fluide sau acele procese care apar la nano-scală, 

folosind un operator de derivare extins. 

 


