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Abstract. We use the Scale Relativity Theory formalism in an arbitrary 

constant fractal dimension to show that for a two-dimensional non-differentiable 

and non-coherent fluid, for which we consider its entities as vortex-type objects, 

the coherence mechanism induces vortices streets. Moreover, if the fluid bears 

self-constraints from the two planes, the attractive or repulsive interaction force 

between the two planes can be determined. As a result, a Cazimir-type effect at 

small scales and a Tifft-type effect at large scales can appear. At nanoscale, these 

findings could explain the fractional or integer quantum Hall effect in graphenes. 
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1. Introduction 

 

Nonlinearity manifests itself under many forms. One of these, the 

coherent structures, is of high interest. These structures can appear from small 

scales (nanoscale and mesoscopic scale) to large scales (infragalactic scale and 

extragalactic scale). For example, for small scale turbulence, the evidence of 

high-vorticity small-size filaments which were observed in Navier-Stokes 
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equations simulations has provided significant theoretical and experimental data 

(Kawahara and Kida, 2004; Reguera et al., 2008). Moreover, pattern formation 

and spatio-temporal structures are also prominent in fluid dynamics, dendritic 

growth, and alos chemo-biological phenomena. In adition, granular flow and 

fracture dynamics are new theoretical fields, which had given rise to numerous 

problems with important nonlinear and statistical aspects, and they will 

certainly be of great importane in the coming years (Reguera et al., 2008). 

These same aspects can also be encountered at large scale in the forming 

processes of cosmic structures (Kauffmann et al., 1993; Schive et al., 2014).  

The role coherence plays in structure formation at various scales is 

presented in (Gottlieb et al., 2004; Munceleanu et al., 2011; Timofte et al., 

2011). More recently, the same topic has been discussed in various models of 

biological systems in (Tesloianu, 2015; Tesloianu et al., 2015), and particularly 

for blood assimilated to a complex fluid. 

In this work we want to show that in the case of a complex fluid, no 

matter the scale, coherence induces interaction between the complex fluids’ 

structural units. 

 
2. Short Reminder on the Differentiable-Non-Differentiable 

 Scale Transition Equations 

 
The dynamics of the differentiable-non-differentiable scale transition at 

nanoscale are described as follows (Agop and Casian-Botez, 2015): 

i) the specific momentum conservation law associated to differentiable-

non-differentiable scale transition: 
 

   
2 21 1

2 2F FD D
t F F FD dt D dt

       
           V V V V V V V   (1) 

 

ii) the states density conservation law associated to differentiable-non-

differentiable scale transition: 
 

   
2 1

0FD
t D dt  

  
      V                  (2) 

 

In relations (1) and (2) V  is the velocity associated to differentiable-

non-differentiable scale transition 
 

D F V V V         (3) 
 

DV  is the differentiable and scale independent velocity, FV  is the non-

differentiable and scale dependent velocity (Nottale, 1993; Nottale, 2011), 

V V  is the convective-type term,   2 1
FDD dt

V  is the dissipative-type 
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term, FD  is the fractal dimension of the motion curves, dt  is the scale 

resolution and D  is the specific coefficient associated to the differentiable-non-

differentiable scale transition. For FD  we can accept any definition 

(Kolmogorov fractal dimension, Hausdorff-Beskovici fractal dimension 

(Mandelbrot, 1983) etc.), but once a definition is set, it has to be constant over 

the entire theoretical model for the involved dynamics.  

If the motions at non-differentiable scale are irrotational, i.e. 

0F V  we can choose FV  of the form 

 

 
2 1

lnFD
F D dt 

  
  V                      (4) 

 

with ln  the non-differentiable velocity scalar potential. 

In the particular case   the right-side term from Eq. (1), 
 

 

 

2 1

2
2 1

2

2
2

F

F

D
F F F

F D
F

D dt

D dt Q

  
 

  
 

 
    

 

 
        

 

V V V

V
V

               (5) 

 

where Q  is the specific non-differentiable potential associated to the 

differentiable-non-differentiable scale transition, 
 

 
2 12 2 FD

F FQ D dt
  
    V V                   (6) 

 

can be correlated with the tensor 
   

 
4 224 lnFDD dt    

  
                        (7) 

 

by means of relation 
 

ˆ 0Q           (8) 
 

For „fluid” behaviours at differentiable-non-differentiable scale 

transition of isentropic type Eq. (7) becomes (Lifshiëtìs and Landau, 1987) 
 

p        (9) 

 

where p  is the pressure and 
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1    

0   


 


 


 


                (10) 

 

Next, we want to demonstrate that the above-defined pressure can 

generate either atractive, or repulsive force fields. In order to acomplish wemust 

firstly consider that the velocity field is a cnoidal-type one (for mode details on 

the subject, see (Casian-Botez and Agop, 2015)). 

 

3. Chaoticisation Through Non-Differentiability 

 

All physical variables cuantities, which are dependent on spatial-

temporal coordinates and resolution scales (i.e. fractal variables), can be 

extended on a complex manifold by means of chaoticisation through non-

differentiability (Nottale, 1993; Nottale, 2011). As an example, in the case of 

real space, the scalar velocity potential can be replaced with a “state function” 

from the fractal space (with probabilistic meanings of state density) through 

such an extension.  Thus, the “state function’s” form can be determined through 

self-similarity that characterizes fractal variables (Aronstein and Stround, 1997; 

Cristescu, 2008): if, in the real space, the one-dimensional velocity is of a 

cnoidal type (more details on this subject can be found in (Casian-Botez and 

Agop, 2015)), then, in the fractal space, the “state function” will also be cnoidal, 

if we use a suitable selection of a normalization factor. 

Let us now consider a two-dimensional non-differentiable and non-

coherent fluid. Then its entities, assimilated to vortex-type objects, are 

structured as a two-dimensional lattice, as can be seen in Fig. 1.  
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Fig. 1 ‒ A two-dimensional lattice of vortex-type objects. 
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Then, taking into consideration the facts presented above (the cnoidal 

mode which is assimilated to a Toda-type nonlinear lattice (Cristescu, 2008; 

Toda, 1989) and the self-similarity property of physical variables) the “state 

function” has the expression 

 

 Ψ ,cn v s                (11) 

 

with 

 

 

'

2 2
'

1 1
0 0 22 2 2 2' 2

2 '2

, , ,

, ,

1 sin 1 sin

1

K K K
v u u i

a a b

d d
K K

k k

k k

 

 

 

 

   

 

   
 

 

              (12a-f) 

 

 

In relations (12 a-f) K , 
'K  are the complete elliptic integrals of the first 

kind of modulus k 37
 and a, b are the constants of the vortex lattice (Armitage 

and Eberlein, 2006). 

If we apply this formalism to a complex plane (for details see (Lifshiëtìs 

and Landau, 1987)) and using the following equation 

 

   /Γ
Ψ ;

Q u
e cn v k                  (13) 

 

we induce the scalar complex potential of the complex velocity field 

 

   Γln cn ;Q u v k 
 

                  (14) 

 

with Γ the vortex constant. 

Based on (14) the complex velocity field can then be defined as 



50                                                         Vlad Ghizdovaț et al. 
 

 

 

     
 

sn ; ;Γ

cn ;

v k dn v kdQ u K
V iV

du a v k
                              (15) 

 

or, using the notations (Armitage and Eberlein, 2006)  
 

     

 

   

'
1

' '
1 1

sn ; , cn ; , dn ; ,

, sn , ,                              

, , , ,

s k c k d k

K
s k

a

K
c cn k d dn k

a

  

  

   

  

 

  

                (16a-h) 

 

   
   

   
  

2 2 2 2 2 22 2 2 2 2
1 1 1 1 1 1

2 2 2 2 2 22 2 2 2 2
1 1 1 1 1 1

2 2 22 2 2 2 2 2 2 2
1 1 1 1 1 1

2 2 2 22 2 2 2
1 1 1 1

Γ
 

Γ

1

scd c d k c s s d d c k s
K

V iV
a scd c d k c s s d d c k s

s c d c d c k s s d d k c s
K

i
a d s c c s d s d

 

   
     
   
  

   
  

 

(17) 

 
Since 

   

  '

cn  Ω cn 

Ω 2 2 1 2

, 1, 2,

v v

m K inK

m n

 

  

   

                (18a-c) 

 

for 
' '0, 1 and 1, 0k k k k    limits, the initially non-coherent fluid 

(with the amplitudes and phases of its entities independent) becomes coherent 

(i.e. the amplitudes and phases of its entities are starting to be correlated). These 

types of dynamics can be seen in Figs. 2 a-f: it results that the coherence of the 

fluid reduces to its ordering on vortices streets – see Figs. 2 a, b for vortices 

streets aligned with the O  axis and Figs. 2 e, f for vortices streets aligned with 

the O  axis. 
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Fig. 2 ‒ Three–dimensional (a, c, e) and two-dimensional (b, d, f) real part 

 of the potential velocity field for different nonlinearity degrees 

 (s = 0.1 – a, b; s = 0.5 – c, d; s = 1 – e, f). 

 
In this manner, if we consider that the state density is constant, the 

difference between self-dissipation and self-convection generates, through a 

self-pressure gradient, the self-force: 
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1
ΓΔ Δp


   V V V                              (19) 

or, in the ξ, η coordinates plane  
2 2
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     
             

              (20a, b) 

 

Then, after employing a quite long but elementary calculus one gets 

from (20a,b), through the degenerations: 
 

i) 
' '0, 1, ,

2
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

 
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


 
   

     
 

 
   

    
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                 (21a, b) 

with 
2

0 1 1

Γ
, ,

2 2
p

a a a

  
  
 

   
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                       (22a-c) 
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 
   

     
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              (23a, b) 

with 
2
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0 1 1

Γ
, ,

2 2 2
p

b b b

  
  
 

   
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         (24a-c) 
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In relations (21a, b) – (24a-c) l1 and l2 are the elementary space intervals 

as considered on the O  and O  axis, respectively (Fig. 3). As a result, we 

can state that the non-differentiability and coherence properties of the fluid, due 

to self-constraints, generate pressure along the O  and O  axis. 

 

 

 
 

Fig. 3 ‒ The fluid between two parallel planes, with its entities 

 assimilated to vortex – type objects. 

 
Let us now envision a fluid with a vortex lattice bounded by two 

parallel and infinitely thin liquid planes in the O  plane, at a distance l1 of 

each other. According to the facts we presented, if the fluid bears self-

constraints from these two planes, then on their normal axis (here, O  axis), 

a coherent structure of vortex street type is induced. Consequently, by 

integrating (23a, b) and (24a-c) in relation with variables r  and r  and 

under restrictions 

 

1

2

,

,

,    1, 2,

l b

l a





 





 

                (25a-c) 

 
This is shown in Figs. 4a, b (for different values of the parameters ν, 

δ = 1, 2, … and r). 
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a) 

b) 

 
Fig. 4 ‒ Plot of pressure pη on the planes, versus parameter r for ν = 5, δ = 1,..5 (a);  

Plot of pressure pξ versus parameter r for ν = 5 , δ = 1,..5 (b). 

 
We must highlight the following conclusions: a) pressure  on the 

planes, given by (26a) stabilized for great r values, is always negative, hence an 

attractive force (Fig. 4a); b) besides pressure  acting on the planes, another 

pressure must manifest,  (Fig. 4b), acting along the  axis and given by 

(26b). Thus we notice that this pressure becomes null for great r values, and has 

a minimum for some values of the parameters m, n; c) if the planes were in the 

 plane, the self-constraints being along the  axis, vortices streets would 

form along this axis and the result in (23a, b) with (24a-c) would have been 

applied, i.e. the cases i) or ii) are identical, nonetheless they depend on the 

selected geometry; d) the pressures  and  generate tensions of 

internal friction, while  and  generate compression tensions in 

the attractive case and stretching tensions in the repulsive case; e) if one tries to 

compute the order of magnitude of the force between the planes, and replaces in 

(23b) or (25b): , 
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  (specific values for the boundary layer) and 

 (the distances between the planes) a value for  can be 

obtained, , i.e. of the order of viscous dissipation tension 

(Lifshiëtìs and Landau, 1987).  A similar calculus can be made for Cooper-type 

pairs in the case of type I superconductors (Poole et al., 1995). 

 
4. Conclusions 

 
The main conclusions of the present paper are presented in the 

following: 

i) A short description of the differentiable-non-differentiable scale 

transition dynamics is made (implying momentum and states density 

conservation laws). 

ii) Applying this specific formalism, it can be shown that, in the case of 

a two-dimensional non-differentiable and non-coherent fluid, with its entities 

assimilated to vortex-type objects, the coherence induces vortices streets.  

iii) Furthermore, if the fluid bears self-constraints from the two planes, 

then on their normal axis a coherent structure of vortex street type appears. In 

this case, the interaction forces (being either attractive or repulsive) between the 

two planes can be assessed. Then, a Cazimir-type effect (Wilson et al., 2011) at 

small scales and a Tifft-type effect (Tifft, 1982) at large scales can manifest. At 

nanoscales, such an effect could explain the fractional or integer quantum Hall 

effect (Rao and Sood, 2013) in graphenes. 

iv) This theoretical model can be applied to infra and extra galactic 

scales, for which the vortex constant is related to a gravitational-type Planck 

constant (Agnese and Festa, 1997).  

v) Moreover, in our opinion, by being able to understand the rules 

which determine the structure coherence of complex fluids, one cand find the 

most viable solution for explaining the specific individual variations in the 

evolution and prognosis of different types of cardiovascular diseases 

(Mäkikallio et al., 2001). 

We note that the same model can also be applied, because of its 

theoretical implications, in engineering and materials science, in various 

domains, such as the ones described in (Agape et al., 2016; Agape et al., 

2017; Gaiginschi and Agape, 2016; Gaiginschi et al., 2011; Gaiginschi et al., 

2014a; Gaiginschi et al., 2014b; Gaiginschi et al., 2017; Vornicu et al., 

2017). 
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COERENȚA ÎN STRUCTURILE FRACTALE 

 

(Rezumat)  

 

Prin aplicarea Teoriei Relativității de Scară într-o dimensiune fractală de 

constantă arbitrară, se arată că, pentru un fluid necoerent nediferențiabil bidimensional, 

ale cărui entități pot fi asimilate cu obiecte de tip vortex, mecanismul de coerență induce 

străzi de vortexuri. Într-un caz particular, dacă fluidul prezintă limitări date de cele două 

plane, forța de interacțune (fie de tip atractiv, fie de tip repulsiv) dintre cele două plane 

poate fi determinată. Atunci, se pot observa efecte de tip Cazimir la scări mici și efecte 

de tip Tifft la scări mari (extragalactice). La nanoscară, acestea pot explica efectul Hall 

fracționar sau integru în grafene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


