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Abstract. It is show that the Maxwell’s equations have a “hidden” 

symmetry on the form of the Barbilian’s group. Some properties and 

implications of this group is also analyzed. 
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1. Introduction 

 

Let us consider the Maxwell’s equations in simple media (non-

dispersive, linear and isotropic) without sources (Harrington, 2001): 
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Using vectorial calculus, we can transform these equations in two wave 

equations, one in electric field, E , and the other in magnetic field, H : 
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We only continue with the equation in electric field, since the equation 

in magnetic field has the same form. 

In Cartesian coordinate systems, the vectorial Eq. (2) is equivalent with 

3 similar scalar equations: 
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For this equation a “hidden” symmetry in the form of Barbilian’s group 

is given. 

 

2. Mathematical Model 

 

Every component is a scalar function of space and time. Following the 

method of variables separation, we consider: 

 

     i iE x,y,z,t g x, y,z T t , i x, y,z    (5) 

 

So, the Eq. (4) become: 
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Now, we restrain the problem to one-dimensional (1D) case, i.e. that the 

electric field has component only in x-direction. In this situation, 

   ig x, y,z x    and the Eqs. (6) and (7) become: 
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where 
2

0i k   

 

The most general solution of the Eq. (8) can be written in the form: 

 

     0 0i k x i k x
x he he

  
     (10) 

 

with h   a complex amplitude, h  its complex conjugate and φ a phase. 

This solution describes a complex system structural units (electrical 

field – material structures) of the same “characteristic” 0k , in which the 

structural unit is identified by means of the parameters h,h  and 
ik e  . Now, 

a question arises. Which is the relation among the structural units of the 

complex system having the same 0k ? The mathematical answer to this question 

can be obtained if we admit that all we intend here is to find a way to switch 

from a triplet of numbers - the initial conditions - of a structural unit, to the 

same triplet of another structural unit having the same 0k . 

This passage implies a “hidden symmetry” which is made explicit in the 

form of a continuous group with three parameters, group that is simple 

transitive and which can be constructed using a certain definition of 0k . 

We start from the idea that the ratio between two fundamental solutions 

of  Eq. (8) is a solution of Schwartz’s nonlinear equation (Mihăileanu, 1972): 
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where the curly brackets define Schwartz’s derivative of 0  with respect to x, 
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This equation proves to be a veritable definition of 0k , as a general 

characteristic of a complex system of structural units which can be swept 

through a continuous group with three parameters - the homographic group. 

Indeed, Eq. (11) is invariant with respect to the dependent variable 

change: 
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(13) 

 

and this statement can be directly verified. 

In this way, τ(x) characterizes another structural unit of the same 0k , 

which allows us to state that, starting from a standard structural unit, we can 

sweep the entire complex system of structural units having the same 0k , when 

we are not conditioning (we leave it free) the three ratios a : b : c : d in Eq. (13). 

We can make even more accurate the correspondence between a 

homographic transformation and a structural unit of the complex system, by 

associating to every structural unit of the complex system, a “personal” τ (x) by 

the relation: 
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Let us observe that 0  and 1  can be used freely one in place of another 

and this leads us to the following transformation group for the initial conditions: 

 

ah b ah b ch d
h ,h ,k k

ch d ch d ch d

  
  

  
               (15) 

 

This group is simple transitive: to a given set of values  a c ,b c ,d c  

will correspond a single transformation and only one of the group. 

The group (15) works as a group of “synchronization” among the 

various structural units of the complex system, process to which the amplitudes 

and phases of each of them obviously participate, in the sense that they ate 

correlated, too. More precisely, by means of (15), the phase of k is only moved 

with a quantity depending on the amplitude of the structural unit of complex 

system at the transition among various structural units of the complex system. 

But not only that, the amplitude of the structural unit of the complex system is 

also affected homographically. 

The usual “synchronization” manifested through the delay of the 

amplitudes and phases of the structural units of the complex system must 

represent here only a totally particular case. 

Theorem 1: In the “field variables” space of the synchronization group 

one can a priori build a probabilistic theory based on its elementary measure, 

as an elementary probability. Then the invariant function of the synchronization 

group becomes the repartition density of an elementary probability. 
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The proof of these statements is based on the differential and integral 

properties of the homographic group. Thus, considering a specific 

parametrization of the group (15), the infinitesimal generators (Mercheș and 

Agop, 2015): 

 

 2 2

1 2 3
ˆ ˆ ˆB ,B h h ,B h h h h k

h h h h h h k

      
       
      

     (16) 

 
satisfy the commutation relations: 

 

1 2 1 2 3 3 3 1 22ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆB ,B B , B ,B B , B ,B B                             (17) 

 
The structure of the group (15) is given by Eq. (17) so that the only 

non-zero structure constants should be: 

 
1 3 2

12 23 311 2C C ,C       (18) 

 
Therefore, the invariant quadratic from is given by the “quadratic” 

tensor of the group (15): 

  

C C C 

     (19) 

 
where summation over repeated indices is understood. Using (18) and (19), the 

tensor C  writes: 
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meaning that the invariant metric of the group (15) has the form: 
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g
      (21) 

 

with g an arbitrary factor and  , 1 2 3, ,   three differential 1-forms 

(Flanders, 1989), absolutely invariant through the group (15). Barbilian takes 
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these 1-forms as being given by the relations (Barbilian, 1937; Mercheș and 

Agop, 2015): 
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so that the metric (21) becomes 
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It is worthwhile to mention a property connected to the integral 

geometry: the group (15) is measurable. Indeed, it is simply transitive and, since 

its structure vector: 
 

C C

                                        (24) 

 

is identically null, as it can be seen from (18) , this means that it possess 

the invariant function: 
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which is the inverse of the modulus of determinant of a linear system obtained 

on the basis of infinitesimal transformations of the group (15). 

As a result, in the space of the field variables  h,h ,k  one can a priori 

construct a probabilistic theory in the sense of Jaynes (on the circumstances left 

unspecified in an experiment), based on the elementary measure of the group 

(15): 
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dh dh dk
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as elementary probability, where   denotes the external product of the 1-forms. 

In such context, the invariant function of the group (15), i.e. relation (25), 

becomes the repartition density of the elementary probability (26). An attitude 

toward Quantum Mechanics which is suitable for Quantum Gravity in general, 

and for its application to cosmology in particular, is not so easy to find. A 
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philosophically realistic attitude toward Quantum Mechanics would seem to be 

more effective than one based on operators which must find their physical 

meaning in terms of measurements. Where Quantum Theory differs from 

Classical Mechanics (in this view) is in its dynamics, which of course is 

stochastic rather than deterministic. As such, the theory functions by furnishing 

probabilities for sets of histories. What ordinarily makes it difficult to regard 

Quantum Mechanics as in essence a modified form of probability theory, is the 

peculiar fact that it works with complex amplitudes rather than directly with 

probabilities, the former being more like square roots of the latter. In this context 

the above mentioned whole arsenal of Quantum Mechanics can be extended to 

fractal manifolds by means of a Jaynes type procedure (Jaynes, 1973). 

The above results can be re-written in real terms based on the 

transformation: 
 

   h,h ,k u,v,    (27) 

 

which can be made explicit through the relations 
 

ih u iv,h u iv,k e        (28) 
 

Thus, both the operators (16) and the 1-forms (22) have the expressions: 
 

 2 2

1 2 3 2 2ˆ ˆ ˆM ,M u v ,M u v uv v
u u v u v

     
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     

         (29) 

 

Respectively 
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sin cos
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while the 2-form (23) reduces to the two-dimensional Lorentz metric 
 

     
2 2 2

2 2 2
1 2 3

2

du du dv
d

v v

 
          

 
                    (31) 

 

Theorem 2: The existence of a transport of directions in the Levi-Civita 

sense in the field variables space substitutes the homographic group with that of 

spin as a synchronization group. 
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Let us focus on the metric (23) or (31). It is reduced to the metric of 

Lobachewski’s plane in Poincare’s representation: 

 

 

2

22
4

ds dhdh

g h h



  (32) 

 

for the condition 0 0   , i.e., in real terms (28) 

 

du
d

v
                                                 (33) 

 

Since by this restriction the metric (31) in the variables (28) reduces to 

Lobachewski’s one in Beltrami’s representation: 

 
2 2 2

2 2

ds du dv

g v


    (34) 

 
the condition (33) defines a parallel transport of vectors in the sense of Levi-

Civita (the definition of the parallelism angle in the Lobachewski plane, that is, 

the form of connection (Agop et al., 2015; Mercheș and Agop, 2015): the 

application point of the vector moves on the geodesic, the vector always making 

a constant angle with the tangent to the geodesic in the current point. Indeed, 

taking advantage of the fact that the metric of the plane is conformal Euclidean, 

we can calculate the angle between the initial vector and the vector transported 

through parallelism, as the integral of the equation (Agop et al., 2015; Mercheș 

and Agop, 2015). 

 

      2

1 1

2
d ln F du ln F dv ,F u,v

v u v

  
      

                    (35) 

 
along the transport curve. 

Since F (u, v) represents the conformal factor of the given metric, 

introducing it in (35), we find (33). 

The “ensemble” of the initial conditions of the structural units of the 

complex system corresponding to the same 0k   can be organized as a geometry 

of the hyperbolic plane. More precisely, these structural units of the complex 

system correspond to a situation where their initial conditions can be chosen 

from among points of a hyperbolic plane. 
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The existence of the parallel transport in the sense of Levi-Civita (33) 

implies either the substitution of the operators (16) with the operators: 

 

2 2

1 2 3
ˆ ˆ ˆB ,B h h ,B h h

h h h h h h

     
       

     
                     (36) 

 
in the case of the representation in complex variables, or the substitution of the 

operators (29) with the operators: 

 

 2 2

1 2 3 2ˆ ˆ ˆM ,M u v ,M u v uv
u u v u v

    
       

    
                (37) 

 
in the case of the representation in real variables. 

Theorem 3: Through the correlation phase-amplitude given by the 

relation (33), the operators (37) reduce to the spin operators in the null vectors 

space 

 

1 2 3
ˆ ˆ ˆS cos v sin ,S sin v cos ,S i

v v

    
        

    
       (38) 

 
Precisely, we discuss about the compactifcation of the angular 

momentum in the null vectors space in the form of the spin. 

These operators multiplied with the factor  
 2 1FD

dt


 , are identical, 

with the fractal angular momentum operators in the representations: 

 
x v sin , y vcos ,z iv        (39) 

 
One can directly verify that, abstraction by a constant factor, the 

operators (38) are just the fractal spin operators satisfying the same 

commutation relations as Pauli matrix  1 2 3i i , ,  . They can be interpreted as 

fractal angular momentum operators in the fractal space of null radius 

 
2 2 2 0x y z     (40) 

 

The corresponding variables (v, ψ) are not concrete variables but just 

only internal freedom degrees. Moreover, the differential and integral 

geometry of this group imply the “explanation of the circumstances left 

unspecified in an experiment” in the Jaynes probabilistic theory, while the 
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compactification of the angular momentum in the null vectors space through 

the definition of a parallel transport on directions in the Levi-Civita sense in a 

hyperbolic space implies the spin. 

 
3. Conclusions 

 

It is shown that the Maxwell’s equations have a “hidden” symmetry in 

the form of Barbilian’s group. In such conjecture, some implications and 

properties of this group are given. 
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ASUPRA UNEI SIMETRII ,,ASCUNSE” A ECUAŢIILOR LUI MAXWELL 

 

(Rezumat) 

 
Se arată că ecuaţiile cîmpului electromagnetic prezintă o simetrie ,,ascunsă” ce 

se poate explicita sub forma grupului de invariantă Barbilian. Într-o asemenea 

conjunctură, cîteva proprietăţi şi implicaţii ale acestui grup sunt de asemenea date. 

 


