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Abstract. In the framework of the Scale Relativity Theory in an arbitrary 

and constant fractal dimension, some dynamics at the blood-brain interface are 

analyzed. Precisely, by assimilating the hematoencephalic barrier to a particular 

potential barrier, the reflectance and transmission coefficients are obtained. In 

such a context, the reflectance coefficient corresponds to a blocking state of the 

blood-brain barrier, while the transparency coefficient corresponds to a 

penetration state of the blood-brain barrier. These coefficients can be influenced 

by external constraints (either physiological or psychological). 
 

Keywords: hematoencephalic barrier; Scale Relativity Theory; fractal 

tunneling effect. 

 

 
1. Introduction 

 

The hematoencephalic barrier (HEB) consists of endothelial cells from 

the brain blood vessels system and perivascular elements (astrocytes, pericytes, 

basal membrane). This barrier strictly and specifically controls the exchanges 
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between blood and the extracellular brain space. The existence of such a 

physical barrier, enzymatically active, which isolates the central nervous system 

(CNS) has very wide physiological, biological, pharmacological and 

pathological implications, most of which are not yet fully known.    

The hematoencephalic barrier is a vital biological membrane which 

protects the brain from toxic substances, and simultaneously allowing the 

essential nutrient substances and chemical mediators to pass through it. A 

downside of its protective role is that it blocks the access for many drugs which, 

in particular cases, could have a positive impact on the brain. Its comprehensive 

study could lead to many important discoveries in various medical areas. 

However, it seems that its biological functionality is not studied nearly enough 

(possible due to the fact that there is no clear and correct methodology to 

investigate it). As a result, many medical domains are progressing slowly, such 

as the development of new and efficient neuropharmaceutics and the study of 

various diseases (cerebrovascular disease, Alzheimer, brain tumors etc.) 

The hematoencephalic barrier has a very low permeability to ions if no 

specific carriers are present. The endothelial movement of ions, either by ion 

carriers, or through ion channels, has a number of important functions. This 

movement is involved in regulating concentrations for several key ions in the 

brain (e.g. K
+
, Ca

2+
, Na

+
), absorption and extrusion of metals, fluid secretion, 

and by being related to the endothelium sodium gradient, nutrients transport 

(Bradbury, 1992).  

A full understanding of ion transport at the HEB level could lead to 

treatment advances in numerous diseases, especially for strokes, where edema 

formation is caused by a net accumulation of ions, and thus of water in the brain 

(De Vries and Prat, 2005). In spite of this, HEB ion transport mechanisms are 

not yet fully understood, due to limitations in current in vitro and in vivo 

experiments and to the low rate of transport. In the present paper a 

mathematical model for dynamics occurring in the hematoencephalic barrier is 

developed.  

 

2. Mathematical Model 

 

The hematoencephalic barrier can be assimilated to a complex system, 

considering both its functionality, as well as its structure (Badii and Politi, 

1997; Mitchell, 2009). The models commonly used to study the dynamics of 

complex systems are based on the assumption, otherwise unjustified, of the 

differentiability of the physical variables that describe them, such as density, 

momentum energy etc. The success of differentiable models must be understood 

sequentially, i.e. on domains large enough that differentiability and integrability 

are valid. 

But differential method fails when facing the physical reality of 

complex systems dynamics. In order to describe such physical dynamics of 
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complex systems, but still remaining tributary to differential hypothesis, it is 

necessary to introduce, in an explicit manner, the scale resolution in the 

expressions of the physical variables that describe these dynamics and, 

implicitly, in the fundamental equations of “evolution” (i.e. density, momentum 

and energy equations). This means that any dynamic variable, dependent, in a 

classical meaning, on both spatial coordinates and time, becomes dependent 

also on the scale resolution, in this new context (Nottale, 2011; Mercheș and 

Agop, 2016; Agop et al., 2018). In other words, instead of working with a 

dynamic variable, described through a strictly non-differentiable mathematical 

function, we will just work with different approximations on that function, 

derived through its averaging at different scales resolution. Consequently, any 

dynamic variable acts as the limit of a functions family, the function being non-

differentiable for a null scale resolution and differentiable for a nonzero scale 

resolution. 

This approach, well adapted for applications in the field of complex 

systems where any real determination is conducted at a finite scale resolution, 

clearly implies the development of a new physical theory applied to complex 

systems for which the motion laws, invariant to spatial and temporal 

coordinates transformations, are integrated with scale laws, invariant at scale 

transformations. Such a theory based on the above presented assumptions was 

first developed in the Scale Relativity Theory (Nottale, 2011) and more 

recently, in the Scale Relativity Theory with an arbitrary constant fractal 

dimension (Mercheș and Agop, 2016; Agop et al., 2018). Both theories define 

the “fractal physics models”. 

The fractal physics models consider that the dynamics of complex 

system structural units take place on continuous but non-differentiable curves 

(fractal curves). In such context, constraints dependent dynamics, in a Euclidian 

space, i.e. on continuous but differentiable curves, are substituted by constraints 

independent dynamics in a fractal space, i.e. on continuous but non-

differentiable curves (fractal geodesics). Any other external constraint will be 

understood as a selection of the fractal geodesics in the fractal space. Thus, all 

structural units of the complex systems are substituted with the fractal geodesics 

themselves. Moreover, for time scales large with respect to the inverse of the 

maximum Lyapunov exponent (Mandelbrot, 1982; Cristescu, 2008), 

deterministic trajectories can be replaced by families of potential trajectories, 

i.e. fractal geodesics, and the concept of defined positions by that of probability 

densities. 

In the following, let us explain the above mentioned “methodology” in 

order to describe the dynamics of a hematoencephalic barrier. The functionality 

of such dynamics can be sustained by means of interaction processes at the 

blood-brain barrier level. Between two successive interactions the trajectory of 

any hematoencephalic barrier entity is a straight line that becomes non-

differentiable at the impact point. Considering that all interactions “points” form 
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an uncountable set of “points”, it results that trajectories of all system entities 

become continuous but non-differentiable curves. Once specified the curves 

type, in a fractal space they will be identified, through the motion equations, 

with its geodesics (fractal geodesics). On a fractal space we can simultaneously 

“operate” with various non-differentiable dynamics: of quantum type in the 

fractal dimension DF = 2, of correlative type in fractal dimension DF < 2 or 

dynamics of non-correlative type in fractal dimension DF > 2 (details in 

(Mandelbrot, 1982; Nottale, 2011)). As consequence, on such a space, non-

differentiable motion curves (fractal curves) with various fractal dimensions can 

simultaneously coexist. Practically, the “global” dynamics of such a system is 

of a multi-fractal type. The dynamics selection, and so the selection of fractal 

curves “classes” still remains tributary to the external constraints. 

Now, the mathematical procedure implies the following steps: 

i) obtaining the fractal geodesics equations; 

ii) equations explicitation as fractal geodesics solutions, based on 

“adequate” initial and boundary conditions imposed by external constraints; 

iii) physical parameters “generation” from the fractal geodesics 

explicitation, parameters which can be put in correspondence with some 

biological models.  

In the paper, we go through the following stages in agreement with the 

above-mentioned mathematical procedures: 

i) The fractal geodesics were obtained in the hypothesis that the external 

constraints are equivalent to a one-dimensional potential barrier of rectangular 

shape. As a matter of fact, the problem is reduced to a standing dynamics one, 

considering the tunnel effect of a fractal type; 

ii) The stationary solutions of the tunnel effect of fractal type were 

obtained by imposing “adequate” initial and boundary conditions; 

iii) First of all, the fractal reflection factor and the fractal transmission 

factor were determined. With this knowledge, the fractal reflectance and the 

fractal transparency were then obtained.  

Let us list some important properties of the hematoencephalic barrier 

assimilated to a biological complex system (Nottale, 2011; Mercheș and Agop, 

2016): 

i) Any fractal curve that is specific to the dynamics of a 

hematoencephalic barrier is explicitly scale resolution of biological type t 

dependent, i.e., its length tends to infinity when t tends to zero; 

We mention that, from mathematical point of view, a curve is non-

differentiable, i.e. is a fractal, if it satisfies the Lebesgue theorem (Mandelbrot, 

1982), i.e. its length becomes infinite when the scale resolution tends to zero. 

Consequently, in this limit, a curve is as zig-zagged as one can imagine. Thus, it 

exhibits the property of self-similarity in every one of its points, which can be 

translated into a property of holography (every part reflects the whole) 

(Mandelbrot, 1982; Agop et al., 2018).  
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ii) The fractal physics of the biological processes is related to the 

behavior of a set of functions during the zoom operation of the scale resolution 

t. Then, through the substitution principle, t will be identified with dt, i.e., 

t dt  and, consequently, it will be considered as an independent variable. We 

reserve the notation dt for the usual time as in the Hamiltonian system 

dynamics. 

iii) The dynamics of a hematoencephalic barrier is described through 

fractal functions depending on both the space-time coordinates and the scale 

resolution since the differential time reflection invariance of any fractal variable 

is broken. Then, in any point of a fractal curve, two derivatives of the fractal 

variable  ,Q t dt can be defined by means of relations: 

 

     

     

0

0

, , ,
lim

, , ,
lim

t

t

d Q t dt Q t t t Q t t

dt t

d Q t dt Q t t Q t t t

dt t







 



 

    




    




              (1) 

 

The “+” sign corresponds to the forward fractal biological processes, 

while the “–” sign correspond to the backwards ones. 

iv) The differential of the spatial coordinate,  ,id X t dt , by means of 

which we can describe the dynamics of the hematoencephalic barrier , is 

expressed as the sum of the two differentials, one of them being scale resolution 

independent in the form of differential part  id x t , and the other one being 

scale resolution dependent in the form of fractal part  id t , i.e., 
 

     , ,i i id X t dt d x t d t dt      (2) 
 

v) The differential of the fractal part 
id  , by means of which we can 

describe the dynamics of a hematoencephalic barrier, satisfies the fractal 

equation: 

   
1

, FDi id t dt dt       (3) 

 

where i
 are constant coefficients through which the fractalisation type 

describing the dynamics of a hematoencephalic barrier is specified and DF 

defines the fractal dimension of the fractal curve (Mandelbrot, 1982; Cristescu, 

2008). 

Moreover, any definition can be chosen for DF (fractal dimension in the 

Kolmogorov meaning, fractal dimension in the Hausdorff-Besikovici meaning 

etc. (Mandelbrot, 1982; Cristescu, 2008)), but once selected, it will keep a 

constant value during the dynamic analysis of the hematoencephalic barrier. 
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In our opinion, the fractal physics of the biological processes implies 

simultaneous dynamics on geodesics (the trajectories of the hematoencephalic 

barrier entities) with various fractal dimensions. The variety of these fractal 

dimensions of the geodesics comes as a result of the structural-functional 

complexity of the hematoencephalic barrier. More precisely, DF = 2 

characterizes the quantum type biological processes, DF < 2 correlative type 

biological processes, while for DF > 2 non-correlative type ones (for details see 

(Nottale, 2001)). From this perspective any biological system, both for 

morphologic and functional point of view, can be assimilated to a multifractal 

(for details see (Mandelbrot, 1982; Barnsley, 1993)). 

vi) The differential time reflection invariance of any fractal variable by 

means of which we can describe the dynamics of the hematoencephalic barrier 

is recovered by combining the derivatives d dt  and d dt in the non-

differentiable operator: 

ˆ 1

2 2

d d d dd i

dt dt dt

       
    

   
   (4) 

 

From a mathematical point of view this is a natural result of the 

Cresson’s prolongation procedure applied in general to complex system 

dynamics (Barnsley, 1993). For example, applying the fractal operator to the 

spatial coordinate,  ,iX t dt , by means of which we can describe the dynamics 

of the hematoencephalic barrier, yields the complex biological velocity field: 
 

ˆ
ˆ

i
i i i

D F

dX
V V V

dt
       (5) 

with 

1 1
,

2 2

i i i i
i i

D F

d X d X d X d X
V V

dt dt

    
       (6) 

 

The real part i

DV  of the complex biological velocity field is 

differentiable and scale resolution independent (differentiable biological 

velocity field), while the imaginary one i

FV  is non-differentiable and scale 

resolution dependent (fractal biological velocity field). 

vii) An infinite number of fractal curves (fractal geodesics) can be 

found relating any pair of points of a fractal manifold, and this is true on all 

scale resolutions of hematoencephalic barrier dynamics. Then, in the fractal 

space, all the entities of the hematoencephalic barrier are substituted with the 

fractal geodesics themselves so that any external constraint can be interpreted as 

a selection of fractal geodesics in the same space. The infinity of fractal 

geodesics in the bundle, their non-differentiability, the two values of the 

derivative, etc., imply a generalized statistical fluid-like description. We’ll name 
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it fractal biological fluid. In this way, one provides the fractalization type 

through stochastic biological processes. From such a perspective, the average 

values of the fractal biological fluid variables (by means of which we can 

describe the dynamics of the hematoencephalic barrier) must be considered in 

the sense of the stochastic biological process associated to fractalization, for 

example the choose of the average of id X
in the form: 

 

i id X d x                            (7) 

which by (2) implies: 

 0id                               (8) 

 

viii) The fractal biological fluid dynamics can be described through a 

scale covariant derivative, the explicit form of which is obtained as follows. Let 

us consider that the fractal curves are immersed in a 3-dimensional space and 

that X
i
 are the spatial coordinates of a point on the fractal curve. We also 

consider the fractal biological fluid variable Q  and its Taylor expansion up to 

the second order: 

 
1

, ,
2

i i l k

t i l kdQ X t dt Qdt QdX QdX dX                 (9) 

 

These relations are valid in any point and more for the points X
i
 on the 

fractal curve which we have selected in (9). From here, forward and backward 

average values of fractal biological fluid variable Q  from (9) become: 
 

1

2

i l k

t i l kd Q Qdt Qd X Qd X d X                     (10) 

 

Further, let us suppose that the average values of the fractal biological 

fluid variable Q and its derivatives coincide with themselves and the 

differentials id X
and dt are independent. Therefore, the average of their 

products coincides with the product of averages. Consequently, (10) becomes: 
 

1

2

i l k

t i l kd Q Qdt Q d X Q d X d X           (11) 

 

Even the average value of id  is null, for the higher order of id  the 

situation can still be different. Let us focus on the averages l kd d  
. Using 

(3) we can write: 

 
 2 1FDl k l kd d dt dt   



               (12) 

 

where we accepted that the sign “+” corresponds to 0dt   and the sign “–“ 

corresponds to 0dt  . 
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Then, (11) takes the form: 
 

 
 2 1

1

2

1

2

F

i l k

t i l k

Dl k

l k

d Q Qdt Qd x Qd x d x

Q dt dt 

   



 

       

   
 

                   (13) 

 

If we divide by dt and neglect the terms that contain differential factors 

(for details, see the method from (Nottale, 2001; Mercheș and Agop, 2016; 

Agop et al., 2018)) we obtain: 

 

 
 2 11

2

FDi l k

t i l k

d Q
Q v Q dt Q

dt
 


                   (14) 

 

what allows us to define the local operators:   

 

 
 2 11

2

FDi l k

t i l k

d
v dt

dt
 


                 (15) 

 

where ,
i i

i id x d x
v v

dt dt

 
  

                            
 

Under these circumstances, taking into account (4), (5) and (15), let us 

calculate d̂ dt . It results: 

 

 
 2 1

ˆ 1ˆ
4

FDi lk

t i l k

dQ
Q V Q dt D Q

dt


                 (16) 

where 

,

lk lk lk

lk l k l k lk l k l k

D d id

d d              

 

   
         (17) 

 

The relation (16) also allows us to explicitly define the fractal operator 

of the fractal biological fluid dynamics in the form: 
 

 
 2 1

ˆ 1ˆ
4

FDi lk

t i l k

d
V dt D

dt


                (18) 

 

We will name this operator a “scale covariant derivative”. 

ix) Let us now consider the functionality of the scale covariance 

principle applied to the hematoencephalic barrier dynamics (the physics laws 

applied to the hematoencephalic barrier dynamics are invariant with respect to 
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scale resolution transformations (Nottale, 2011)). It results that the passage 

from the classical (differentiable) physics of the biological processes to the 

fractal physics of the biological processes can be implemented by replacing the 

standard time derivative d dt  by the fractal operator d̂ dt  from (18). Thus, the 

fractal operator (18) plays the role of the scale covariant derivative, namely it is 

used to write the fundamental equations of fractal biological fluid dynamics in 

the same form as in the classic (differentiable) case. Under these conditions, 

applying the fractal operator (18) to the complex biological velocity field (5), in 

the absence of any external constraint, the fractal biological geodesics equation 

takes the form: 

 
 2 1

ˆ ˆ 1ˆ ˆ ˆ ˆ 0
4

F

i
Di l i lk i

t l l k

dV
V V V dt D V

dt


             (19) 

 

This means that, in the dynamics of a hematoencephalic barrier, the local 

acceleration ˆ i

tV , the convection ˆ ˆl i

lV V  and the dissipation ˆlk i

l kD V   , make 

their balance in any point of the fractal curve. Moreover, the presence of the 

complex coefficient of viscosity-type  
 2 114 FD lkdt D

  in the fractal biological 

fluid dynamics specifies that it is an “biological” rheological medium. So, it has 

“biological” memory, as a datum, by its own structure (Tesloianu et al., 2015).  

If the fractalization in the dynamics of a hematoencephalic barrier is 

achieved by Markov type stochastic processes, which involve Lévy type 

movements (Mandelbrot, 1982; Barnsley, 1993; Nottale, 2011) of the fractal 

biological fluid entities, then the following condition is satisfied (Mercheș and 

Agop, 2016): 

2i l i l il                    (20) 
 

where 
il  is the Kronecker’s pseudo-tensor and λ is a specific coefficient 

associated to the fractal-nonfractal biological transition (Nottale, 2011; Mercheș 

and Agop, 2016). 

Then, the fractal biological geodesics equation of the fractal biological 

fluid takes the simple form: 
 

                          
 

 2 1
ˆ ˆ

ˆ ˆ ˆ ˆ 0F

i
Di l i l i

t l l

dV
V V V i dt V

dt



                           (21) 

 

or more, by separating the motions on differential and fractal scale resolutions, 
 

 
 

 
 

2 1

2 1

ˆ
0

ˆ
0

F

F

i
Di l i l l iD

t D D l D F l F

i
Di l i l l iF

t F D l F F l D

dV
V V V V dt V

dt

dV
V V V V dt V

dt









         
 

         
 

          (22) 
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In the presence of an external scalar potential, U, the fractal biological 

geodesics equation becomes: 
 

               2 1
ˆ ˆ

ˆ ˆ ˆ ˆF

i
Di l i l i

t l l
dV

V V V i dt V U
dt




                        (23) 

 

For irrotational motions of the fractal biological fluid, the complex 

velocity field ˆ iV  takes the form: 
 

        
 2/ 1ˆ 2 ( ) lnFDi iV i dt 


                            (24) 

 

Then substituting this relation in (24), the fractal biological geodesics 

equation (for details see method from (Nottale, 2011)) becomes: 
 

 
   4/ 2 2/ 12( ) ( ) 0

2
F FD Dl

l t
U

dt i dt    
 
                    (25) 

 

The fractal biological variable 
 2/ 1

2 ( ) lnFD
i dt  


 

 
defines, 

through (24), the complex biological scalar potential of the complex biological 

velocity field, while   corresponds to the fractal (biological) state. Both 

variables,   and  , have no direct physical meaning, but possible 

“combinations” of them can acquire it if they satisfy certain conservation laws.  

Let us make explicit such a situation for  . In this purpose, we first 

notice that the complex conjugate of  , that is  , satisfies through (25) the 

equation: 

   4/ 2 2/ 12( ) ( ) 0
2

F FD Dl
l t

U
dt i dt    

 
               (26) 

 

Multiplying (25) by   and (26) by  , subtracting the results and 

introducing the notations: 
 

(2/ ) 1
, ( ) FD

i dt   
 J

   
(        )       (27)  

 

we can obtain the conservation law of the fractal (biological) states density: 
 

0t  J      (28) 

 

In Eq. (27)  corresponds to the fractal (biological) state density and J 

corresponds to the fractal (biological) current of the the fractal (biological) 

states density.  
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According to the aforementioned statements, hereinafter we can 

consider a hematoencephalic barrier whose fractal (biological) entities are 

moving on continuous and non-differentiable curves (fractal curves). In such 

conjecture, the hematoencephalic barrier dynamics, when subjected to an 

external constraint, i.e. a scalar potential U, are described through the fractal 

geodesics of the form (Eq. (26)): 

  

                             

   4/ 2 2/ 12( ) ( ) 0
2

F FD Dl
l t

U
dt i dt    

 
       (29) 

 

In Eq. (29): Ψ is the fractal (biological) state, lx are the fractal spatial 

coordinates, U is the external scalar potential,   is the specific coefficient 

associated to fractal-nonfractal transition, dt is the scale resolution of biological 

type and DF is the fractal dimension of a motion curve of the hematoencephalic 

barrier entity.  

In the one-dimensional case, the Eq. (1) becomes: 

 

       

   4/ 2 2/ 12( ) ( ) 0
2

F FD D
xx t

U
dt (x,t) i dt (x,t) (x,t)    

 
      (30) 

 

If the external scalar potential U is time independent,
 

0tU   , the Eq. 

(30) admits the fractal stationary solution: 

 

(2/ ) 1
( , ) ( )exp

2 ( ) FD

i
x t x Et

m dt

 
 

 
  

  

   (31) 

 

where E is the fractal biological energy of the fractal stationary biological state 

θ(x). Then θ(x) becomes a fractal solution of the fractal non-temporal equation: 

 

(4/ ) 22

1
( ) ( ) ( ) 0

2 ( ) F
xx D

x E U x
m dt

 
 

      (32) 

 

Now, we can describe, through Eq. (32), stationary biological dynamics 

of the biological complex field (relation (24)) in the form of fractal biological 

states  , when   “suffers” constraints given by the following external scalar 

potential configuration (Fig. 1). It has been selected the simplest potential 

configuration in the form of fractal (biological) barrier. 
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Fig. 1 ‒ External scalar potential configuration (hematoencephalic barrier) 

 for the tunnel effect of the fractal biological type. 

 

0
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a x
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

  
   

                    (33) 

 

where U0 is the fractal biological barrier height and a is its width. These 

biological dynamics can be “perceived”, as “functionality” of a tunnel effect of 

fractal biological type. A fractal biological entity with known fractal biological 

energy penetrates a fractal biological barrier of greater fractal biological energy 

than the incident one (in conditions in which the fractal biological entity is 

identified with its own geodesic).  

As it is shown in Fig. 1, the fractal real straight line { / Rx x } is 

structured in three fractal regions, denoted by 1, 2, 3 and called, of fractal 

biological incidence, of fractal biological barrier and of fractal biological 

emergence, respectively. The fractal (biological) energy E of the fractal 

biological entity of the hematoencephalic barrier dynamics was deliberately 

chosen smaller than U0, in the fractal (biological) barrier region, just in order to 

“mime” a tunnel effect of fractal (biological) type. Denoting by θ1, θ2, θ3 the 

fractal functions (R→C, defined on R with values in C) corresponding to the 

fractal (biological) states of the fractal (biological) entity into the above 

mentioned three fractal regions, we have the following fractal equations:  
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                      (34) 

 

In the fractal Eqs. (34), for convenience, we have made the notations: 

 

2 2 0

(4/ ) 2 (4/ ) 22 2
,    

2 ( ) 2 ( )F FD D

U EE
k q

m dt m dt   


    (35) 

 

The simple form of the above three fractal equations leads to their quick 

integration and the following fractal solutions are obtained: 

 

1 1 1

2 2 2

3 3

( ) e e  - 0

( ) e e      0 a

( ) e                    a x

ikx ikx

qx qx

ikx

x A B x

x A B x

x A











    

   

   

   (36) 

 

where A1, B1, A2, B2, A3 are constants from C. The fractal (biological) states 

{ e / Rikx k  } are associated with the direct fractal (biological) states which is 

incident (from -∞) in the fractal region 1 and emergent (to +∞) in the fractal 

region 3. The fractal (biological) states { e / Rikx k

 } are associated with the 

reflected fractal (biological) states which exists only in the fractal region 1, 

passing from x = 0 to x = -∞, since in the fractal region 3 the external scalar 

potential is uniform null. The justification of this interpretation is based on the 

second expression from (27) in the form: 

 

        

(2/ ) 1
( ) FD

x

d d
J i dt

dx dx

 
  

 
   

 
     (37) 

 

which for the direct fractal (biological) states, (1,3) eikxA  becomes: 

 
2

(2/ ) 1

(1,3) (1,3)2 ( ) FDJ dt A     (38) 

 

It represents the fractal (biological) current of the fractal incident 

(biological) states density in the fractal region 1:  



62                                                         Irina Crumpei-Tanasă et al. 
 

 

2(2/ ) 1

12 ( ) FD

iJ dt k A 
     (39) 

 

and the fractal (biological) current of the fractal emergent (biological) states 

density in the fractal region 3: 

 
2(2/ ) 1

32 ( ) FD

eJ dt k A 
    (40) 

 

For the fractal (biological) current, of the fractal reflected (biological) 

states density we have the relation: 

 
2(2/ ) 1

12 ( ) FD

rJ dt B 
                    (41) 

 

This leads to the possibility of a univocal characterization of the tunnel 

effect of fractal (biological) type, through the fractal (biological) transparency: 

 
2

1

3
==

A

A

J

J
T

i

e
        (42) 

and the fractal (biological) reflectance: 
2

1

1
==

A

B

J

J
R

i

r
        (43) 

 

As these values are independent from the constants A2 and B2, their 

direct estimation presents no direct interest. Therefore, imposing the coupling 

conditions (in x = 0 and x = a), for fractal functions θi with i = 1, 2, 3 and for 

their derivatives, which means: 

 

1 2

1 2

2 3

32

(0) (0)

(0) (0)

( ) ( )

( ) ( )

d d

dx dx

a a

dd
a a

dx dx

 

 

 











       (44) 

 

the fractal algebraic system results: 
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In this fractal algebraic system, we will seek the elimination of the 

unknown quantities A2 and B2 to obtain the expressions: 

 

1

1

1

3
=,=

A

B
r   

A

A
τ         (46) 

 

called the fractal (biological) transmission factor τ, and the fractal (biological) 

reflection factor r, respectively, because the following relationships are 

satisfied: 

2

2

==

==

rrrR

τττT
    (47) 

 

By dividing the last two equations from (45), member by member, it results: 

 

22

2

e qaB q ik

A q ik





   (48) 

 

which substituted in the ratio of the first two equations from (45), i.e.: 

 

2 2

2 2

1 /1

1 1 /

B Ar q
i

r k B A


  

 
    (49) 

 

leads, through solving in relation with r and by the appropriate grouping of 

terms, to the expression of the fractal (biological) reflection factor: 

 
2 2

2 2( ) 2 ( )

k q
r

q k iqk cth qa


 

  
   (50) 

 

and to the expression form of the fractal (biological) reflectance: 

 
2 2 2

2 2 2 2 2 2

( )

( ) 4 ( )

k q
R

q k q k cth qa



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  (51) 
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It is noted that R has values between 0 (for qa→0) and 1 (for a→∞) and 

represents the fractal (biological) reflection of the hematoencephalic barrier 

entity on the fractal (biological) barrier. 

Now, based on the conservation law of the fractal (biological) current of 

the fractal (biological) states density: 

 

i r eJ J J      (52) 

 

explicitly, we have:  

 

 2 2 2(2/ ) 1 (2/ ) 1

1 1 32 ( ) 2 ( )F FD Ddt A B dt A                  (53) 

 

Considering the way in which we defined the fractal (biological) 

transparency, and the fractal (biological) reflectance of the fractal (biological) 

barrier, respectively, from the above relation it can be found: 

 

1≡+ RT     (54) 

 

From the first two fractal equations of the fractal algebraic system (17), 

removing the unknown B2, it can be obtained: 
 

 12

1

(2 ) ( ) ( )
A

q q ik r q ik
A

      (55) 

 

while from the third fractal equation of the same fractal algebraic system, it can 

be found: 

2 2

1 2

ika qa qaA B
e e e

A A
   
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 
   (56) 

 

Finally, substituting in (56) the expressions (55), r and (48), the fractal 

(biological) transmission factor results in the form:  

 

2 2

2

( ) ( ) 2 ( )

ikaiqke

q k sh qa iqk ch qa




 
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          (57) 

 

From here, the fractal (biological) transparency becomes:  
 

2 2

2 2 2 2 2 2

4
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having, as well, values between 1 (for qa→0) and 0 (for a→∞). 

Finally, using the notations (35), we obtain the final form of the 

relations (50) and (58), i.e.: 
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Introducing now the dimensionless coordinates: 
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the fractal (biological) reflectance R = R(X, Y) and the fractal (biological) 

transparency T = T(X, Y) respectively, become: 

 
2 2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2
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X Y
R
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X Y
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
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               (62) 

 
In Figs. 2(a-d) we present the variation of the fractal (biological) 

reflectance R on the dimensionless coordinates X and Y: a) and b) the 

dependence R = R(X, Y); c) the dependence R = R(X, Y=constant); d) the 

dependence R = R(X=constant, Y). 
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Fig. 2 ‒ The variation of the fractal (biological) reflectance of dimensionless 

coordinates X and Y: 

a), b) the dependence R = R(X, Y); c) the dependence R = R(X, Y=constant);  

d) the dependence R = R(X=constant, Y). 

 
In Figs. 3 (a-d) we present the variation of the fractal (biological) 

transparency T on the dimensionless coordinates X and Y: a) and b) the 

dependence T = T(X, Y); c) the dependence T = T(X, Y=constant); d) the 

dependence T = T(X=constant, Y). 
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Fig. 3 ‒ The variation of the fractal (biological) transparency of dimensionless 

coordinates X and Y: 

a), b) the dependence T = T(X, Y); c) the dependence T = T (X, Y=constant);  

d) the dependence T = T (X=constant, Y). 

 
The dependence of R on X involves minimal and asymptotic increases, 

while the dependence of R on Y involves only asymptotic increases. The 

dependence of T on X involves maximal and asymptotic decreases, while the 

dependence of T on Y involves only asymptotic decreases. 

If qa >> 1 and, as E and U0 are of same size order, it can be admitted 

the approximation: 
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Then, with this approximation, the Eqs. (57) and (58) become: 
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3. Conclusions 

 

In the present paper a fractal model for the dynamics occurring at the 

hematoencephalic barrier level is developed. Using a one-dimensional 

stationary Schrodinger fractal equation for a classical potential barrier, which in 

our opinion can be assimilated to the blood-brain barrier, the reflectance and 

transparency coefficients of this barrier have been determined. In such context, 

we can say that these reflectance (corresponding to a blocking state of the 

blood-brain barrier) and transparency (corresponding to a penetration state of 

the blood-brain barrier) coefficients can be influenced by external constraints 

(either physiological or psychological).  
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DINAMICI ÎN BARIERA HEMATOENCEFALICĂ – O ABORDARE 

MULTIFRACTALĂ 

 

(Rezumat) 

  

Utilizând teoria fractală a mișcării în forma Teoriei Relativității de Scală în 

dimensiune fractală constantă și arbitrară, sunt analizate dinamici particulare la nivelul 

interfeței sânge-creier. Astfel, asimilând bariera hematoencefalică cu o barieră specifică 

de potential, se pot determina coeficienții de reflexie și transparență ai acesteia. Într-un 

asemenea context, coeficientul de reflexie corespunde stării de blocare a barierei 

hematoencefalice, în timp ce coeficientul de transmisie corespunde stării de penetrare a 

aceleiași bariere. Acești coeficienți sunt influențați de constrângeri externe, atât 

fiziologice cât și psihologice. 
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